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SGLang Overview
SGLang is a fast serving framework for large language models 
and vision language models.
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What is SGLang?
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Comes with its unique features for better performance

Serves the production and research workloads at xAI (100K+ GPUs)

An open-source inference engine for LLMs

https://grok.com/ 

https://grok.com/


SGLang provides leading inference performance
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v0.1 (Jan. 2024)
5x higher throughput with automatic KV cache reuse
3x faster grammar-based constrained decoding 

v0.2 (July 2024)
3x higher throughput with low-overhead CPU runtime

v0.3 (Sept. 2024)
7x faster triton attention backend for custom attention variants (DeepSeek MLA)
1.5x lower latency with torch.compile 

Compared to the other popular inference engines:

v0.4 (Dec. 2024)
Zero-overhead CPU scheduler and structured outputs
Cache-aware load balancer
Fastest DeepSeek inference



SGLang architecture overview
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OpenAI-compatible API

Native generation API

Structured language frontend

Client

Server

API server
Tokenizer

Model Worker

Memory pool
Radix tree cache 

Attention backend

Detokenizer

Lightweight and customizable codebase in Python/PyTorch



Major Techniques
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Four techniques covered in this talk

1. Efficient KV cache reuse with RadixAttention
2. Cache-aware load balancing with SGL-Router
3. Zero-overhead CPU scheduling
4. Hierarchical KV cache
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LLM inference pattern:
Complex pipeline with multiple LLM calls
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QuestionUser
Requests

LLM Calls Answer 1

Follow-up question

Answer 2
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Chained calls

Parallel calls
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LLM Calls
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Multi-call structure brings optimization opportunities 
(e.g., caching, parallelism, shortcut)

Chained calls

Parallel calls

LLM inference pattern:
Complex pipeline with multiple LLM calls



(a) Multi-turn chat

(b) Few-shot
learning

Few-shot examples Question 1 Answer 1Prompt 1

Few-shot examples Question 2 Answer 2Prompt 2

Few-shot examples Question 3 Answer 3Prompt 3

There are rich structures in LLM calls
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Reusable KV cache (Key-Value cache, some intermediate tensors)

Turn 1 (Q) Turn 1 (A)

Chat History Turn 2 (Q) Turn 2 (A)

Chat History Turn 3 (Q) Turn 3 (A)

Chat History Turn 4 (Q) Turn 4 (A)



Question

Question 1 Answer 1

Search History Q 1.1 A 1.1

Search History Q 1.1.1 A 1.1.1

Search History Q 1.2 A 1.2

Search History Q 1.2.1 A 1.2.1

Question 2 Answer 2

Search History Q 2.1 A 2.1

Search History Q 2.1.1 A 2.1.1

Search History Q 2.2 A 2.2

Search History Q 2.2.1 A 2.2.1
Reusable KV cache
 (intermediate tensors) 12

(c) Tree search
with LLM agents

The structures can be very complicated
Parallelizable branches



Technique 1: Efficient KV cache reuse with RadixAttention
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KV Cache
- Some reusable intermediate tensors
- Can be very large (>20GB, larger than model weights)
- Only depends on the prefix tokens

Existing systems: Discard KV cache after an LLM call finishes
Ours: Maintain the KV cache of all LLM calls in a radix tree (compact prefix tree)

Chat History Turn 4 (Q) Turn 4 (A)
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RadixAttention maintains the KV cache of all 
LLM calls in a radix tree (compact prefix tree)



RadixAttention handles complex reuse patterns
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RadixAttention enables 
efficient prefix matching, 
insertion, and eviction.

It handles trees with hundreds 
of thousands of tokens.



Cache-aware scheduling increases cache hit rate
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Single worker case
Sort the requests in the queue according to matched prefix length

Idea: Utilize user annotations and runtime metrics for scheduling



Results

• Up to 5x higher throughput with KV cache reuse and parallelism

17Source: SGLang v0.1 blog, https://lmsys.org/blog/2024-01-17-sglang/ 

• Works automatically across workloads and text/image tokens

https://lmsys.org/blog/2024-01-17-sglang/


Technique 2: Cache-aware load balancer
- SGL Router
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Technique 2: Cache-aware load balancer
- SGL Router
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Round robin Cache aware
load balancer

Throughput (token/s) 82665 158596
Cache hit rate 20% 75%

Prefix 1

Prefix 2

Replica 1, replica 2

Replica 3, replica 4



Technique 3: Zero-overhead CPU scheduling

An unoptimized inference engine can waste more than 50% time on 
CPU scheduling.

20Source: https://mlsys.wuklab.io/posts/scheduling_overhead/ 
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Overlap CPU scheduler and GPU worker
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Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker Model Worker

Scheduler

Blocking
Scheduler

Overlapped
Scheduler

Jobs of the CPU scheduler
• Receive input messages
• Stream model outputs
• Check the stop conditions
• Maintaining radix tree and run prefix matching
• Allocate memory for the next batch

Ideas
• Resolve the dependency by delaying the stop 

condition check
• Use CUDA events and streams to do fine-grained 

scheduling

NanoFlow: Towards Optimal Large Language Model Serving Throughput. Kan Zhu et al.
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Performance
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Zero CPU time according
to the nsight profiler

1.3x faster than 
SOTA OSS baseline



Technique 4: Hierarchical KV cache
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Skipped



Open-Source Community and
Industry Deployment
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Industry adoption
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SGLang has been deployed to large-scale production, generating trillions of tokens 
every day. It is supported by the following institutions (incomplete list) with 400+
OSS contributors:



Feature coverage

• Support all common optimizations
• Continuous batching, prefix caching, token attention (paged attention),

speculative decoding, tensor parallelism, chunked prefill, structured
outputs, quantization (FP4/FP8/INT4), multi-lora serving

• Support all major OSS models
• Text: DeepSeek V3/R1, Llama 1/2/3, Qwen, Mixtral
• Vision: Llama 4, QwenVL, DeepSeek-VL, Llava, Pixtral

• Documentation w/ interactive notebooks: https://docs.sglang.ai/
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https://docs.sglang.ai/


Open-source development roadmap

Throughput-oriented large-scale deployment
Prefill-decode disaggregation (link)
Expert/pipeline/context parallelism

Reinforcement learning integration
Weight sync, asynchronous algorithms, memory saver
veRL Integration (link), Areal, LlamaFactory

Low latency optimizations
Speculative decoding (e.g., EAGLE 3), kernel optimizations

The full roadmap: https://github.com/sgl-project/sglang/issues/4042 
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https://github.com/sgl-project/sglang/issues/4655
https://verl.readthedocs.io/en/latest/workers/sglang_worker.html
https://github.com/sgl-project/sglang/pull/4247
https://github.com/sgl-project/sglang/issues/4042


A case study of the DeepSeek system
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Load balancer + prefill / decode disaggregation + speculative decoding + quantization + 
tensor/expert/pipeline parallelism + external KVCache storage



A case study of the DeepSeek system
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Within the 24-hour statistical period
- Total input tokens: 608B, of which 342B tokens (56.3%) hit the on-disk KV cache.
- Total output tokens: 168B. 

If all tokens were billed at DeepSeek-R1’s pricing, the total daily revenue would be $562,027, with a 
cost profit margin of 545%.



Question & Answer
Github: https://github.com/sgl-project/sglang
X (twitter): https://x.com/lmsysorg
Paper (NeurIPS’24) : https://arxiv.org/abs/2312.07104 

Welcome to join the slack and bi-weekly dev meeting!
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https://github.com/sgl-project/sglang
https://x.com/lmsysorg
https://arxiv.org/abs/2312.07104
https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw
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