
Efficient LLM Inference with SGLang
Speaker:
Ying Sheng (xAI, LMSYS, UCLA)



Content

SGLang overview
Techniques covered in this talk

• Efficient KV cache reuse with RadixAttention
• Cache-aware load balancing with SGL Router
• Zero-overhead CPU scheduling
• Hierarchical KV cache

Open-source community and industry deployment
• Hot topics in LLM inference systems and roadmap
• Large scale deployment practice – A case study of DeepSeek inference system

2



SGLang Overview
SGLang is a fast serving framework for large language models 
and vision language models.

3



What is SGLang?

4

Comes with its unique features for better performance

Serves the production and research workloads at xAI (100K+ GPUs)

An open-source inference engine for LLMs

https://grok.com/ 

https://grok.com/


SGLang provides leading inference performance

5

v0.1 (Jan. 2024)
5x higher throughput with automatic KV cache reuse
3x faster grammar-based constrained decoding 

v0.2 (July 2024)
3x higher throughput with low-overhead CPU runtime

v0.3 (Sept. 2024)
7x faster triton attention backend for custom attention variants (DeepSeek MLA)
1.5x lower latency with torch.compile 

Compared to the other popular inference engines:

v0.4 (Dec. 2024)
Zero-overhead CPU scheduler and structured outputs
Cache-aware load balancer
Fastest DeepSeek inference



SGLang architecture overview

6

OpenAI-compatible API

Native generation API

Structured language frontend

Client

Server

API server
Tokenizer

Model Worker

Memory pool
Radix tree cache 

Attention backend

Detokenizer

Lightweight and customizable codebase in Python/PyTorch



Major Techniques

7



Four techniques covered in this talk

1. Efficient KV cache reuse with RadixAttention
2. Cache-aware load balancing with SGL-Router
3. Zero-overhead CPU scheduling
4. Hierarchical KV cache

8



LLM inference pattern:
Complex pipeline with multiple LLM calls

9

QuestionUser
Requests

LLM Calls Answer 1

Follow-up question

Answer 2

Clarification

Answer 3

Chained calls

Parallel calls

QuestionUser
Requests

LLM Calls

Answer 1

Answer 2 Select

Answer 3



10

Multi-call structure brings optimization opportunities 
(e.g., caching, parallelism, shortcut)

Chained calls

Parallel calls

LLM inference pattern:
Complex pipeline with multiple LLM calls



(a) Multi-turn chat

(b) Few-shot
learning

Few-shot examples Question 1 Answer 1Prompt 1

Few-shot examples Question 2 Answer 2Prompt 2

Few-shot examples Question 3 Answer 3Prompt 3

There are rich structures in LLM calls

11

Reusable KV cache (Key-Value cache, some intermediate tensors)

Turn 1 (Q) Turn 1 (A)

Chat History Turn 2 (Q) Turn 2 (A)

Chat History Turn 3 (Q) Turn 3 (A)

Chat History Turn 4 (Q) Turn 4 (A)



Question

Question 1 Answer 1

Search History Q 1.1 A 1.1

Search History Q 1.1.1 A 1.1.1

Search History Q 1.2 A 1.2

Search History Q 1.2.1 A 1.2.1

Question 2 Answer 2

Search History Q 2.1 A 2.1

Search History Q 2.1.1 A 2.1.1

Search History Q 2.2 A 2.2

Search History Q 2.2.1 A 2.2.1
Reusable KV cache
 (intermediate tensors) 12

(c) Tree search
with LLM agents

The structures can be very complicated
Parallelizable branches



Technique 1: Efficient KV cache reuse with RadixAttention

13

KV Cache
- Some reusable intermediate tensors
- Can be very large (>20GB, larger than model weights)
- Only depends on the prefix tokens

Existing systems: Discard KV cache after an LLM call finishes
Ours: Maintain the KV cache of all LLM calls in a radix tree (compact prefix tree)

Chat History Turn 4 (Q) Turn 4 (A)



14

RadixAttention maintains the KV cache of all 
LLM calls in a radix tree (compact prefix tree)



RadixAttention handles complex reuse patterns

15

RadixAttention enables 
efficient prefix matching, 
insertion, and eviction.

It handles trees with hundreds 
of thousands of tokens.



Cache-aware scheduling increases cache hit rate

16

Single worker case
Sort the requests in the queue according to matched prefix length

Idea: Utilize user annotations and runtime metrics for scheduling



Results

• Up to 5x higher throughput with KV cache reuse and parallelism

17Source: SGLang v0.1 blog, https://lmsys.org/blog/2024-01-17-sglang/ 

• Works automatically across workloads and text/image tokens

https://lmsys.org/blog/2024-01-17-sglang/


Technique 2: Cache-aware load balancer
- SGL Router

18



Technique 2: Cache-aware load balancer
- SGL Router

19

Round robin Cache aware
load balancer

Throughput (token/s) 82665 158596
Cache hit rate 20% 75%

Prefix 1

Prefix 2

Replica 1, replica 2

Replica 3, replica 4



Technique 3: Zero-overhead CPU scheduling

An unoptimized inference engine can waste more than 50% time on 
CPU scheduling.

20Source: https://mlsys.wuklab.io/posts/scheduling_overhead/ 

0

10

20

30

40

vLLM v0.5.4 SGLang v0.3

Cost breakdown of running Llama 1.3B

GPU Computation CPU Overhead

Av
er

ag
e 

ite
ra

tio
n 

tim
e 

(m
s)

https://mlsys.wuklab.io/posts/scheduling_overhead/


Overlap CPU scheduler and GPU worker

21

Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker

Scheduler

Model Worker Model Worker

Scheduler

Blocking
Scheduler

Overlapped
Scheduler

Jobs of the CPU scheduler
• Receive input messages
• Stream model outputs
• Check the stop conditions
• Maintaining radix tree and run prefix matching
• Allocate memory for the next batch

Ideas
• Resolve the dependency by delaying the stop 

condition check
• Use CUDA events and streams to do fine-grained 

scheduling

NanoFlow: Towards Optimal Large Language Model Serving Throughput. Kan Zhu et al.



22



Performance

23

Zero CPU time according
to the nsight profiler

1.3x faster than 
SOTA OSS baseline



Technique 4: Hierarchical KV cache

24

Skipped



Open-Source Community and
Industry Deployment

25



Industry adoption

26

SGLang has been deployed to large-scale production, generating trillions of tokens 
every day. It is supported by the following institutions (incomplete list) with 400+
OSS contributors:



Feature coverage

• Support all common optimizations
• Continuous batching, prefix caching, token attention (paged attention),

speculative decoding, tensor parallelism, chunked prefill, structured
outputs, quantization (FP4/FP8/INT4), multi-lora serving

• Support all major OSS models
• Text: DeepSeek V3/R1, Llama 1/2/3, Qwen, Mixtral
• Vision: Llama 4, QwenVL, DeepSeek-VL, Llava, Pixtral

• Documentation w/ interactive notebooks: https://docs.sglang.ai/

27

https://docs.sglang.ai/


Open-source development roadmap

Throughput-oriented large-scale deployment
Prefill-decode disaggregation (link)
Expert/pipeline/context parallelism

Reinforcement learning integration
Weight sync, asynchronous algorithms, memory saver
veRL Integration (link), Areal, LlamaFactory

Low latency optimizations
Speculative decoding (e.g., EAGLE 3), kernel optimizations

The full roadmap: https://github.com/sgl-project/sglang/issues/4042 
28

https://github.com/sgl-project/sglang/issues/4655
https://verl.readthedocs.io/en/latest/workers/sglang_worker.html
https://github.com/sgl-project/sglang/pull/4247
https://github.com/sgl-project/sglang/issues/4042


A case study of the DeepSeek system

29

Load balancer + prefill / decode disaggregation + speculative decoding + quantization + 
tensor/expert/pipeline parallelism + external KVCache storage



A case study of the DeepSeek system

30

Within the 24-hour statistical period
- Total input tokens: 608B, of which 342B tokens (56.3%) hit the on-disk KV cache.
- Total output tokens: 168B. 

If all tokens were billed at DeepSeek-R1’s pricing, the total daily revenue would be $562,027, with a 
cost profit margin of 545%.



Question & Answer
Github: https://github.com/sgl-project/sglang
X (twitter): https://x.com/lmsysorg
Paper (NeurIPS’24) : https://arxiv.org/abs/2312.07104 

Welcome to join the slack and bi-weekly dev meeting!

31

https://github.com/sgl-project/sglang
https://x.com/lmsysorg
https://arxiv.org/abs/2312.07104
https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw

	Slide 1: Efficient LLM Inference with SGLang
	Slide 2: Content
	Slide 3: SGLang Overview
	Slide 4: What is SGLang?
	Slide 5: SGLang provides leading inference performance
	Slide 6: SGLang architecture overview
	Slide 7: Major Techniques
	Slide 8:  Four techniques covered in this talk
	Slide 9: LLM inference pattern: Complex pipeline with multiple LLM calls
	Slide 10: LLM inference pattern: Complex pipeline with multiple LLM calls
	Slide 11: There are rich structures in LLM calls
	Slide 12: The structures can be very complicated
	Slide 13: Technique 1: Efficient KV cache reuse with RadixAttention
	Slide 14: RadixAttention maintains the KV cache of all LLM calls in a radix tree (compact prefix tree)
	Slide 15: RadixAttention handles complex reuse patterns
	Slide 16: Cache-aware scheduling increases cache hit rate
	Slide 17: Results
	Slide 18: Technique 2: Cache-aware load balancer - SGL Router
	Slide 19: Technique 2: Cache-aware load balancer - SGL Router
	Slide 20: Technique 3: Zero-overhead CPU scheduling
	Slide 21: Overlap CPU scheduler and GPU worker
	Slide 22
	Slide 23: Performance
	Slide 24: Technique 4: Hierarchical KV cache
	Slide 25: Open-Source Community and Industry Deployment
	Slide 26: Industry adoption
	Slide 27: Feature coverage
	Slide 28: Open-source development roadmap
	Slide 29: A case study of the DeepSeek system
	Slide 30: A case study of the DeepSeek system
	Slide 31: Question & Answer

