2 S5G!

Efficient LLM Inference with SGLang

Speaker:
Ying Sheng (xAl, LMSYS, UCLA)

Content

SGLang overview

Techniques covered in this talk
* Efficient KV cache reuse with RadixAttention
* Cache-aware load balancing with SGL Router
* Zero-overhead CPU scheduling
* Hierarchical KV cache

Open-source community and industry deployment

 Hottopics in LLM inference systems and roadmap
* Large scale deployment practice — A case study of DeepSeek inference system

SGLang Overview

SGLang is a fast serving framework for large language models
and vision language models.

What is SGLang?

An open-source inference engine for LLMs Starred 13.3k ~
Comes with its unique features for better performance

Serves the production and research workloads at xAl (100K+ GPUs)

Welcome to Grok.
How can | help you today?

What do you want to know?

https://grok.com/

&' DeepSearch v @ Think Grok 3 ~ P

‘a, Research &/ Create images 4> How to 1l Analyze 2 Personas

By messaging Grok, you agree to our Terms and Privacy Policy.

https://grok.com/

SGLang provides leading inference performance

Compared to the other popular inference engines:

5x higher throughput with automatic KV cache reuse
3x faster grammar-based constrained decoding

3x higher throughput with low-overhead CPU runtime

7x faster triton attention backend for custom attention variants (DeepSeek MLA)
1.5x lower latency with torch.compile

Zero-overhead CPU scheduler and structured outputs
Cache-aware load balancer
Fastest DeepSeek inference

SGLang architecture overview

Server
APl server
Client Tokenizer \’
Native generation API Model Worker
—> Memory pool

OpenAl-compatible API Radix tree cache

Attention backend

Structured language frontend

Detokenizer /

Lightweight and customizable codebase in Python/PyTorch

Major Techniques

Four technigues covered in this talk

1. Efficient KV cache reuse with RadixAttention
2. Cache-aware load balancing with SGL-Router
3. Zero-overhead CPU scheduling

4. Hierarchical KV cache

LLM inference pattern:
Complex pipeline with multiple LLM calls

User . . e ..
Requests [Question] [Follow-up question] [Clarlﬂcatlon]
Chained calls /\ \
LLM Calls { Answer 1] [Answer 2] { Answer 3]
User .
Requests { Question]
Answer 1 |
Parallel calls ;
LLM Calls Answer 2 Select]
Answer 3 | .

LLM inference pattern:
Complex pipeline with multiple LLM calls

Chained calls)

> Multi-call structure brings optimization opportunities
(e.g., caching, parallelism, shortcut)

Parallel calls y

10

There are rich structures in LLM calls

(a) Multi-turn chat

Turn 1 (Q)

[Turn 1a) |

ChatHistory | [Tun2(Q) | Turn2(a)

Chat History

Turn 3(Q)

Turn 3 (A)

Chat History

: [Turn 4 (Q)

[Turna)

/

Reusable KV cache (Key-Value cache, some intermediate tensors)

(b) Few-shot
learning

Prompt 1

Prompt 2

Prompt 3

Few-shot examples

Few-shot examples

Few-shot examples

Question 1 Answer 1
Question 2 Answer 2
Question 3 Answer 3

11

The structures can be very complicated

Question 1][Answer 1]

(c) Tree search

with LLM agents

Reusable KV cache

Search History] Q11 Al1l |

Search History L A1.11 A111
Search History] Q1.2 Al2

Search History 121 Al21

i Question 2][Answer 2 |

Search History Q21 A21

Search History [Q211] A211
Search History] Q22 A22

Search History ‘ [Q221] [A221

12

(intermediate tensors)

Technique 1: Efficient KV cache reuse with RadixAttention

[Chat History [Turn 4 (Q)] Turn 4 (A)]

/1

KV Cache

- Some reusable intermediate tensors

- Can be very large (>20GB, larger than model weights)
- Only depends on the prefix tokens

Existing systems: Discard KV cache after an LLM call finishes
Ours: Maintain the KV cache of all LLM calls in a radix tree (compact prefix tree)

13

RadixAttention maintains the KV cache of all
LLM calls in a radix tree (compact prefix tree)

(1) (2)

0 U

You are a helpful assistant.
User: Hello!
Assistant: Hil

=)

(3)

)

You are a helpful assistant.
User: Hello!
Assistant: Hil

]

User: Solve this problem ...
Assistant: Sure! ...

0

(4) (5)

L] L]

You are a helpful assistant. You are a helpful assistant.

) [_]
L) B
User: Hello! User: What can you do? User: Hello!
Assistant: Hil Assistant: | can ... Assistant: Hi!

L] (4]]

User: Solve this question...
Assistant: Sure! ...

(]

User: What can you do?
Assistant: | can ...

]

User: Write a story ...
Assistant: Sure! ...

)

14

RadixAttention handles complex reuse patterns

D Question 1: ...
You are a helpful assistant. Answer 1: ...
[j Question 2: ...

Answer 2:...
User: Hello! Question 3:
Assistant: Hi! j
D What ...
Answer 3:
S
_
This is ... Let us... We can ... To solve ...

RadixAttention enables
efficient prefix matching,
insertion, and eviction.

It handles trees with hundreds
of thousands of tokens.

15

Cache-aware scheduling increases cache hit rate

Idea: Utilize user annotations and runtime metrics for scheduling

Single worker case
Sort the requests in the queue according to matched prefix length

def get_next_batch():
Match prefix
for req in waiting_queue:
req.prefix_length = match_prefil(req, radix_tree_cache)

Sort according to the prefix_length
waiting_queue.sort()

Add requests in the next batch within memory constraint
next_prefill_batch = []
for req in waiting_queue:
if can_run(req):
next_prefill_batch.append(req)

return next_prefill_batch 16

© o o9 9O
N Y R

Normalized Throughput

o

Results

* Upto 5x higher throughput with KV cache reuse and parallelism

* Works automatically across workloads and text/image tokens

MMLU HellaSwag ReAct Agent Tree-of-Thought JSON Decode Chat (Short) Chat (Long)

W Guidance mVLLM SGlLang

Source: SGLangv0.1 blog, https://lmsys.org/blog/2024-01-17-sglang/

DSPy RAG

LLaVA Bench

HF TGIl/Transformers m SGLang

17

https://lmsys.org/blog/2024-01-17-sglang/

Technique 2: Cache-aware load balancer
- SGL Router

Round Robin Data Parallel (SGLang v0.3)

" Not cache aware, ~20% Cache Hit Rate

0 =
E / 0o —
Q o Workers
=
0 =
. o =
Router

Cache Aware Data Parallel (SGLang v0.4)

= Cache aware, ~75% Cache Hit Rate

’ Prefix 1
Approm Actual Prefix 1
Tree Workers Tree
Preflx 2 Preflx 5

Router

18

Technique 2: Cache-aware load balancer
- SGL Router

Replica 1, replica 2

Prefix 2
Replica 3, replica 4

Round robin Cache aware
load balancer
Throughput (token/s) 82665 158596
Cache hit rate 20% 75%

19

Technique 3: Zero-overhead CPU scheduling

An unoptimized inference engine can waste more than 50% time on
CPU scheduling.

D Cost breakdown of running Llama 1.3B
£ 10

=

= 30

S

= 20

©

()]

00

© 0

j% vLLM v0.5.4 SGLang v0.3

B GPU Computation ® CPU Overhead

Source: https://mlsys.wuklab.io/posts/scheduling _overhead/ 20

https://mlsys.wuklab.io/posts/scheduling_overhead/

Overlap CPU scheduler and GPU worker

Blocking Scheduler Scheduler Scheduler

Scheduler Model Worker Model Worker Model Worker
Overlapped Scheduler Scheduler Scheduler

Scheduler Model Worker Model Worker Model Worker

Jobs of the CPU scheduler Ideas

* Receive input messages * Resolve the dependency by delaying the stop

* Stream model outputs condition check

 Use CUDA events and streams to do fine-grained

* Check the stop conditions
scheduling

* Maintaining radix tree and run prefix matching
* Allocate memory for the next batch

21
NanoFlow: Towards Optimal Large Language Model Serving Throughput. Kan Zhu et al.

while True:
recv_reqs = self.recv_requests()
self.process_input_requests(recv_reqs)

batch = self.get_next_batch_to_run()
self.cur_batch = batch

if batch:
result = self.run_batch(batch)
self.result_queue.append((batch.copy(), result))

if self.last_batch is None:

Create a dummy first batch to start the pipeline for overlap schedule.

It is now used for triggering the sampling_info_done event.

tmp_batch = ScheduleBatch(
reqs=None,
forward_mode=ForwardMode.DUMMY_FIRST,
next_batch_sampling_info=self.tp_worker.cur_sampling_info,

)

self.process_batch_result(tmp_batch, None)

if self.last_batch:
Process the results of the last batch
tmp_batch, tmp_result = self.result_queue.popleft()
tmp_batch.next_batch_sampling_info = (

self.tp_worker.cur_sampling_info if batch else None

)
self.process_batch_result(tmp_batch, tmp_result)

elif batch is None:

When the server is idle, do self-check and re-init some states
self.check_memory()
self.new_token_ratio = self.init_new_token_ratio

self.last_batch = batch

22

Performance

4s ~ +250ms +255ms +260ms +265ms +270ms +275ms +280ms +2

~ Processes (106)

~ [123335] python ..t0 100%
~ CUDA HW (0000:04:00.0 - N' MKemsw
» [All Streams] e e T e I e e
1 H 0000 0 00 PR o0 B 5 S i
Zero CPU time according i , | |

. . » 0.2% Memory I | . I I]

to the nsight profiler - Threads (15
~ [123335] pt_main_thread 10 T00% K ——

0S runtime libraries
Profiler overhead

~ [124390] pt_main_thread -0 100% _= = ||] =
0S runtime libraries j (sem_wait) (sem_wait) (sem_wait] (sem_walt) (sem_walt
CUDA API 8. £, B, L, 4B,

Llama 3.2 3B Throughput Benchmark on H100 (Higher is Better)
B SOTA OSS baseline M SGLang v0.3 SGLang v0.4

. 6000

<
1.3x faster than) 1000
SOTA OSS baseline %

:

£ 2000

3

23

Technique 4: Hierarchical KV cache

Skipped

Open-Source Community and
Industry Deployment

Industry adoption

SGLang has been deployed to large-scale production, generating trillions of tokens
every day. It is supported by the following institutions (incomplete list) with 400+

OSS contributors:

V| <InviDIA. AMDZ1 Aflas Cloud B baseten

» i CURSOR ’Dm M cicHED 3£ Hyperbolic

Crunch

Linked [} =@ Meituan NEBIUS A Novita

OBercley Uela 01.AI

26

f‘ RunPod & Stanford

Feature coverage

* Support all common optimizations

* Continuous batching, prefix caching, token attention (paged attention),
speculative decoding, tensor parallelism, chunked prefill, structured
outputs, quantization (FP4/FP8/INT4), multi-lora serving

* Support all major OSS models
* Text: DeepSeek V3/R1, Llama 1/2/3, Qwen, Mixtral
* Vision: Llama 4, QwenVL, DeepSeek-VL, Llava, Pixtral

* Documentation w/ interactive notebooks: https://docs.sglang.ai/

27

https://docs.sglang.ai/

Open-source development roadmap

Throughput-oriented large-scale deployment
Prefill-decode disaggregation (link)
Expert/pipeline/context parallelism

Reinforcement learning integration
Weight sync, asynchronous algorithms, memory saver
veRL Integration (link), Areal, LlamaFactory

Low latency optimizations
Speculative decoding (e.g., EAGLE 3), kernel optimizations

The full roadmap: https://github.com/sgl-project/sglang/issues/4042

28

https://github.com/sgl-project/sglang/issues/4655
https://verl.readthedocs.io/en/latest/workers/sglang_worker.html
https://github.com/sgl-project/sglang/pull/4247
https://github.com/sgl-project/sglang/issues/4042

A case study of the DeepSeek system

Load balancer + prefill / decode disaggregation + speculative decoding + quantization +
tensor/expert/pipeline parallelism + external KVCache storage

A

l API Server

Prefill Load Balancer = Decode Load Balancer

Expert-Parallel Load Balancer Expert-Parallel Load Balancer

- Prefill Service Decode Service

A case study of the DeepSeek system

Within the 24-hour statistical period

- Total input tokens: 608B, of which 342B tokens (56.3%) hit the on-disk KV cache.
- Total output tokens: 168B.

If all tokens were billed at DeepSeek-R1’s pricing, the total daily revenue would be $562,027, with a
cost profit margin of 545%.

Cost and Theoretical Income

35K{ ##% Cost WM Theoretical Income*

30K+

25K |
20K |
15K |
10K |

12:'00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00
Time

usD

* The theoretical income is calculated based on R1's standard API pricing, taking into account all tokens across web, APP, and API. It is not our actual income.

30

Question & Answer

Github: https://github.com/sgl-project/sglang
X (twitter): https://x.com/lmsysorg
Paper (NeurlPS’24) : https://arxiv.org/abs/2312.07104

Welcome to join the slack and bi-weekly dev meeting!

31

https://github.com/sgl-project/sglang
https://x.com/lmsysorg
https://arxiv.org/abs/2312.07104
https://join.slack.com/t/sgl-fru7574/shared_invite/zt-2ngly9muu-t37XiH87qvD~6rVBTkTEHw

	Slide 1: Efficient LLM Inference with SGLang
	Slide 2: Content
	Slide 3: SGLang Overview
	Slide 4: What is SGLang?
	Slide 5: SGLang provides leading inference performance
	Slide 6: SGLang architecture overview
	Slide 7: Major Techniques
	Slide 8: Four techniques covered in this talk
	Slide 9: LLM inference pattern: Complex pipeline with multiple LLM calls
	Slide 10: LLM inference pattern: Complex pipeline with multiple LLM calls
	Slide 11: There are rich structures in LLM calls
	Slide 12: The structures can be very complicated
	Slide 13: Technique 1: Efficient KV cache reuse with RadixAttention
	Slide 14: RadixAttention maintains the KV cache of all LLM calls in a radix tree (compact prefix tree)
	Slide 15: RadixAttention handles complex reuse patterns
	Slide 16: Cache-aware scheduling increases cache hit rate
	Slide 17: Results
	Slide 18: Technique 2: Cache-aware load balancer - SGL Router
	Slide 19: Technique 2: Cache-aware load balancer - SGL Router
	Slide 20: Technique 3: Zero-overhead CPU scheduling
	Slide 21: Overlap CPU scheduler and GPU worker
	Slide 22
	Slide 23: Performance
	Slide 24: Technique 4: Hierarchical KV cache
	Slide 25: Open-Source Community and Industry Deployment
	Slide 26: Industry adoption
	Slide 27: Feature coverage
	Slide 28: Open-source development roadmap
	Slide 29: A case study of the DeepSeek system
	Slide 30: A case study of the DeepSeek system
	Slide 31: Question & Answer

