LLIVI OYS

Transformer

Lel LI

A Language Carnegie Mellon University

Technologies .
Inetitute School of Computer Science

L]




Recap

Learning parameters of an NN needs gradient calculation

Computation Graph
o to perform computation: topological traversal along the DAG

Auto Differentiation
o building backward computation graph for gradient calculation

Put together: Deep Learning Framework

1. Define program i.e., symbolic computation graph w/
placeholders/variable/operation nodes

2. Executes (optimized) computation graph on a set of available devices
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Encoder-decoder Architecture

Transtormer Model
o Embedding
o Multihead Attention, Decoder Self-Attention
o FEN
o Layernorm

Training Techniques and Performance of Transformer

Code walkthrough



Type of Language Models

Encoder-only Encoder-decoder Decoder-only
Masked LM Autoregressive

Non-autoregressive
[ Decoder j
f [ Decoder j

[ Encoder ] [ Encoder ]

e.g. BERT e.g. 15 e.g. GPT

RoBERTa |F-)|-ac|\3/|A f |
ESM (for protein) roGen (for protein)
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Encoder-Decoder Paradigm

target:
I like singing and dancing.

|
po(Y1x) = 1IpWil%, ¥1:i-1)
Encoder A

Source: = WKIE FRIBEEE,

conditional prob. modeled by
neural networks (Transformer)



Sequence to Sequence Learning

« Conditional text generation: directly learning a function
mapping from source sequence to target sequence

po(y|x) = l;[p(ytlx, V1.t-1;0)

* Previous encoder/decoder: LSTM or GRU

Encoder Target . fﬁi —:!5‘5{}/_\’ th E % <e0s>

<e0s>

b b b : ’
<bos> E39 = (G|

Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014

Source : 1 le daing



Motivation for a new Architecture

» Full context and parallel: use Attention in both encoder and
decoder

* NO recurrent ==> concurrent encoding

target:
I like singing and dancing.

|

Encoder

Source: = WKIE S AL EE,
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Embedding

« Token Embedding: (tokenization next lec.)

o Shared (tied) input and output embedding from
lookup table

 Positional Embedding:

o to distinguish words in different position, Map
position labels to embedding, dimension is same
as Tok Emb, for t-th pos, i-th dim

t
PE;,; = sin(

10002i/d)
t

10002i/d)

PE;2i41 = co5(



Multi-head Attention

e |[nstead of one vector for each token
* preak into multiple heads

* each head perform attention

Head; = Attention(QWiQ, KwX, vw)
MultiHead(Q, K, V)

= Concat(Head,, Head,, ..., Head, )W ?°

inear
oncat
|
[ 1 1
Scaled Dot-Product EUL h
Attention

| | LE |

[Linear | [Linear ]! [Linear |

Q K Vv
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Query

Key

Value

Multi-head Attention

X are input embeddings from previous layer (num of tok * dim)

wa

Q

sent len X sent len
Q T

softmax(

len x dim

Q: why divided by sqgrt(d)?

Alammar, The Illustrated Transformer 12



Multihead Attention and FFN

Attention(Q,K,V,x) = Softmax((Qi/);Kx) (V)T FENCx) = max(0,x - W + by) - W, + b,
MHA  nnononnon x’FFNggReSldual *****
5%2}]39&9” Uil

=§§= : moane E!]nue”ar ””ﬁ”ﬁgﬂﬂﬂ
£ Ny uuuuuuuuuuuuuuuuuu
NN | | ReLU
T DoREpE mnnnnnnnnnnnnnnnn
s : [Linear
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Decoder Self-Attention

» Maskout right side before softmax (-inf)

Scaled Dot-Product Attention
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Residual Connection and Layer
Normalization

Residual Connection

Make 1t zero mean and unit
variance within layer

Post-norm

Pre-norm

X141

Layer Norm

ention

Attention
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Transformer in Original Paper

C layers of encoder (=0)

) | Scaled DotProduct
D layers of decoder (=6) e
. f Slc”;aled Dot-Product AN
Token Embedding: 512 |feis| ||kes .
(ba Se), 1 024 (large) "% m‘%iﬁﬂ |Lin§r[' |Lint:{r[| ILin%arrl ‘ M;tMmT
- J o) Q K V

FFN dim=2048 -

Embedding eddin
1
Inputs Output
S
(shifted
ight)
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Training Transformer

P(Y1X) = IP(Ytly<t, x)

* Training loss: Cross-Entropy
. target:
[ = _Zzt:logfé’ (le' Yn, 15 ey yn,t—l) I like singing and dancing
n

. . L [ Decoder j
* Teacher-forcing during training.
[ Encoder ] I

» pretend to know groundtruth for

. Source: F& = WRIEAIHEEE,
prefix
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Training Transformer for MT

* Dropout
o Applied to before residual

o and to embedding, pos emb.
op=0.1~0.3

* Label smoothing
o 0.1 probability assigned to non-truth

* \Vocabulary:
o En-De: 37K using BPE
o En-Fr: 32k word-piece (similar to BPE)
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Label Smoothing

« Assume y € R" is the one-hot encoding of label

_ {1 if belongs to class i
R0 otherwise

* Approximating 0/1 values with softmax is hard

 The smoothed vers{on

B — € if belongs to class i
Vi = {e/ (n—1) otherwise

o Commonly use ¢ =01
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Training

e Batch

o group by approximate sentence length

o still need shufflingHardware

o one machine with 8 GPUs (in 2017 paper)
o base model: 100k steps (12 hours)

o large model: 300k steps (3.5 days)

« Adam Optimizer

o Increase learning rate during warmup, then decrease
1 1 t

on= \/—Emin(ﬁ,\/—_)
o

22



ADAM

Miyq = Bime — (1 — B1)VE(x¢)
Ver1 = Bave + (1 = ) (VE(x))?

. My
Mpyr = 1 — :Bt+1
1

~  _ Vts1
Vty1 = 1 — lBt+1
2

U

Xt+1 = Xt — \/A— N Mgy
Vt+1 T €




Model Average

* A single model obtained by averaging the last 5

checkpoints, which were written at 10-minute interval
(base)

» decoding length: within source length + 50
o more on decoding in next lecture
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Summary

* Sequence-to-sequence encoder-decoder framework for
conditional generation, including Machine Translation

« Key components in Transformer (why each?)

o Positional Embedding (to distinguish tokens at different pos)
Multinead attention

Residual connection

ayer norm
FFN

O O O O



Code Go-through

https://nlp.seas.harvard.edu/annotated-transformer/
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