LLIVI OYS

Deep Learning Framework
and Auto Differentiation

L]

Lel LI

A Language Carnegie Mellon University

Technologies .
Inetitute School of Computer Science

Recap of GPU Acceleration
Tiling for efficient matrix computation
Coalesced memory access

Sparse matrix representation and multiplication

CUBLAS

Today's Topic
—> ¢ Learning algorithm for Neural Network
« Computation Graph
 Auto Differentiation

« Put Together: Implementing a Deep Learning Framework

A Simple Feedforward Neural Network

 Neural network layers Softmax

e Elmbeddlng (lookup table) AV

o Linear 1

o Relu Linear

o Average pooling x

o Softmax Rglu
Linear

Embedding

‘It Is a good movie”

The Learning Problem

« Glven a training set of input-output pairs D

= {(xn, Yn)}11\11=1
o x, and y,, may both be vectors

* To find the model parameters such that the model
produces the most accurate output for each
training input

o Or a close approximation of it

— —_— ~ —~—

» Learning the parameter of a neural networkisan
instance!

o The network architecture is given

Training Loss for Classification
e (x,,,Vy,) are data and label pairs for training
« Cross entropy

1 N
LO) =5 2 — o8] (Xn)y,

» Pytorch CrossEntropylLoss is implemented as
o Negative Likelihood on logits (instead of log of softmax)

Today's focus (using PyTorch Example)

loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward() <

how is backward implemented?
how does it work on any network?

Generic lterative Learning Algorithm

» Consider a generic function minimization problem, where X is
unknown variable

min f(x) where f:R? - R
X

* |terative update algorithm
Xer1 < Xe T A

* sothat f(X¢41) < f(X¢)

e How to find A

Gradient Descent
o f(xy +Ax) = f(xy) + Ax"Vf]y,

» To make Ax"Vf],, smallest

o = Ax in the opposite direction of Vf |, reAx = =Vf],,
» Update rule: xp 41 = x¢ — NV,

® 1 Is a hyper-parameter to control the learning rate

(Stochastic) Gradient Descent Algorithm

set learning rate eta.
1. set initial parameter 6 < 6,
2. for epoch =1 to maxEpoch or until converg:
3. for each batch in the data:
total g=0
for each data (x, y) in data batch:

derr(0)
00

compute gradient g =

total g+=¢

4
5
6. compute error err(f(x; 8) - y)
7/
8
9. update 8 =0 -eta *total g/ N

How to compute the gradient for every
parameter in an “arbitrary network™?

ol Softmax
« Goal: compute - for every parameter ;
l
Avg
« Forward computation [
Linear
» Backpropogation “
Relu
Linear
Embedding

‘It is a good movie”

Today's Topic
» Learning algorithm for Neural Network
=+ Computation Graph
 Auto Differentiation

« Put Together: Implementing a Deep Learning Framework

12

Computation Graph

 Calculations on a neural network can be defined using
computation graph

* Each node denotes a variable or an operation

» Directed edges to connect nodes, indicating the input
values for operations.

y 2/ > CEloss

13

X1= 3, x2=0.5
f=x1+ exp(1.5*x1+2.0*x2)

To perform Computation:

1. Topological sorting of all
nodes

2. Calculate the value for
each node given its input

14

Topological Sort

» Put all nodes into un-
processed queue.

« Repeatedly, find a node
without incoming edges from
un-processed nodes

o evaluate Its value based on
operation

o remove the node from the
queue and add it to processed
queue

15

Today's Topic
» Learning algorithm for Neural Network
« Computation Graph
=« Auto Differentiation

« Put Together: Implementing a Deep Learning Framework

19

Gradient Calculation

* To learn a neural network, we need gradient of loss function
w.r.t. parameters.

« Parameters are also variables, and represented as nodes in
the computation graph.

« Chain rule => backpropogation
dy(z) dy(z) dz

dx dz dx

20

x1=3, x2=0.5 - vatives 2
v=x1+ exp(1.5* x1 + 2.0 * x2) Computing the derivatives a—;vi
dy

Define x; = P
l

X1= 3, x2=0.5
y=x1+ exp(1.5*x1 + 2.0 * x2)

Computing the derivatives a—y_

0x;
Definefiz%
x7 =1
Xe = 1

_ 0y 0Ox¢ __

5 = 8x6.0x5 = Xe * €xXp(Xs)
— dy 6x5__
x4_8x5 0x,
__ 0y 0Ox5 __
x3_8x5 0x3_x5

__ 0y 0Ox4 __

W- = X3 * Xy

B aX4 aWZ 22

Node with multiple outgoing edges

_ 6y+_ 0z
r=Y 0x z dx

23

Partial derivatives for Vectors

Jacobian

_ 0y
=22 =

J

[on
x4

\ox:

9y,
dx,
9y,
dx,

row: keep y index, iter x index

col: keep x Index, iter y index

Vector Jacobian Product

(91 on
0y | 0xq Ox,
T ox dy, 0y,

\on 7%,

J

« computing the partial derivative for each node (vector)
x=]"y

26

Auto Differentiation

* Instead of explicitly computing the derivatives (gradients) for
each data sample following the backward direction

« Construct a computation graph for gradient calculation for
every node

» Applicable to any input data (and output=Iloss)

28

x1=3, x2=0.5 - vatives 2
v=x1+ exp(1.5* x1 + 2.0 * x2) Computing the derivatives a—;vi
dy

Define x; = P
l

x1= 3, x2=0.5
y=x1+ exp(1.5*x1 +2.0 " x2)

X153

Implementing Backward Pass
(imoortant for HW2)

v def backward_pass(g, end_node):
"""Backpropagation.

Traverse computation graph backwards in topological order from the end node.
For each node, compute local gradient contribution and accumulate.
outgrads = {end_node: g}
for node in toposort({end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.reclpe
for argnum, parent in ziplargnums, node.parents):
Lookup vector-Jacobian product (gradient) function for this
function/argument.
vip = primitive_vjps([fun] [argnum]

Compute vector-Jacobian product (gradient) contribution due to
parent node's use im this function.

parent_grad = viploutgrad, value, =args, *xkwargs) def add_nutgradﬁiprev_g, ﬂ}!

" Add gradient contributions together.

Save vector-Jacobian product (gradient) for upstream nodes. if prev_q 15 Mone:
Sum contributions with all others also using parent's output. return g
outgrads [parent] = add_outgrads{outgrads.get({parent), parent_grad) return prev_g + g

return outgrad

31

Build the AutoDiff Graph

def make_vip(fun, x):
""“Make function for vector-Jacobian product.

Args:
fun: single-arg function. Jacobilan derived from this.
X! ndarray. Point to differentiate about.

Returns:
vijp: single-arg function. vector -> vector-Jacobian[fun, x] proc
end_value: end value = fun(start_node)

start_node = Node.new_root()
end_value, end_node = trace(start_node, fun, x)
if end_node is None:

def vjp(g): return np.zeros_like(x)
else:

def vjp(g): return backward_pass(g, end_node)
return vip, end_value

def grad({fun, argnum=@):
"""Constructs gradient function.

Given a function fun(x), returns a function fun'(x) that returns the
gradient of fun(x) wrt x.

Args:
fun: single-argument function. ndarray == ndarray.
argnum: integer. Index of argument to take derivative wrt.

Returns:
gradfun: function that takes same args as fun(), but returns the gradient
wrt to fun()'s argnum-th argument.
def gradfun(*args, #+kwargs):
Replace args[argnum] with x. Define a single-argument function to
compute derivative wrt.
unary_fun = lambda x: fun(*subval{args, argnum, x), #*kwargs)

Construct vector=Jacobian product
vjp, ans = make_vjp(unary_fun, args[argnum])
return vjp(np.ones_like(ans))

return gradfun

32

Use AutoGrad

Define training objective
def objective(params, iter):
idx = batch_indices(iter)
return -log_posterior(params, train_images[idx], train_labels[idx], L2_req)

Get gradient of objective using autograd.
objective_grad = grad(objective)

v def neural_net_predict(params, inputs):
"""Implements a deep neural network for classification.
params is a list of (weights, bias) tuples.
inputs is an (N x D) matrix.
returns normalized class log-probabilities."""
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = np.tanh(outputs)
return outputs - logsumexp(outputs, axis=1, keepdims=True)

def log_posterior(params, inputs, targets, L2_req):
log_prior = -L2_reg * 12_norm(params)
log_lik = np.sum(neural_net_predict(params, inputs) x targets)
return log_prior + log_lik

33

How to check the correctness of gradient

* use finite differences to check our gradient calculations
0f (%1, %2) _ f(xy + h,x2) — f(x1 — h,x3)
dx4 2h

» Care the precision!

o Use double precision (fp64)
o Pick asmall h = 0.000001
o Compute the forward difference through the graph twice

34

Quiz

Today's Topic
» Learning algorithm for Neural Network
« Computation Graph
 Auto Differentiation

=« Put Together: Implementing a Deep Learning Framework

36

Deep Learning Frameworks (also for LLMSs)

« expressive to specify any neural networks
o support future custom operators/layers

 productive for ML engineers
o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation
manually)

» efficient in large-scale training and inference
o automatically scale to data and model size
o automatic hardware acceleration

37

Primary Use

Programming
Paradigm

Autograd

Hardware
Support

Ease of Use

Ecosystem

Parallelism

PyTorch

Deep learning

Dynamic (eager
execution)

dynamic comp
graph

CPU, GPU, TPU

Pythonic

PyTorch Lightning,
TorchVision

Multi-GPU with

DataParallel or DDP via tf.distribute

TensorFlow

Deep learnin numerical and numerical
b S ML computing computing

Static (Graph Functional | Procedural

mode, or Eager) transformations

Functional-based

static comp graph T Not available
CPU, GPU, TPU CPU, GPU, TPU CPU only

a bit learning Pythonic and Very easy, native
curve functional python
TensorBoard, Integrates with

TensorFlow N n%;’ W NA

Extended Y

Multi-GPU/TPU Multi-GPU/TPU

: No parallelism
via pmap

38

Deep Learning Framework Design
Principles

« Dataflow graphs (computation graph) of primitive operators

» Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders,
essentially constructing the computation graph

2. Executes optimized version of program on set of available
devices

39

Basic Components (follows tensorflow)

« A Computation Graph, which contains these nodes
o Placeholder: to store the input data (as tensors/multi-dim array)
o Variable: to store the network parameters
o Constant: some static data

o Operation: the mathmatical operations for each neural network

layer, the input are any of these nodes, result is stored in output
= each operation needs to define forward and backward operation

* Session: execution environment
o Perform computation via the topological sort of the nodes

40

All data are represented Tensor

* Atensor is a multi-dimensional array. generalization to vector
and matrix

tf.constant([[1, 2], [3, 4]])
IS a 2x2 tensor with element type int32

tf. Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32)

Pytorch:
torch.tensor([[1., 2.], [3., 4.]])

41

Example Computation Graph in Tensorflow

h = RELU(Wx + b)

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tfVariable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

(ReLU)

!

(Add)

(MatMul)

TR

42

e valueis

Placeholder Node (Tensorflow v1)
h = RELU(Wx + b)

x = tf.placeholder(tf.float32, (1, 784))

Represent Inputs, Labels, ...

No need

Placeho

fed in at

fo exp
der in

execution time
icitly define

Tensorflow v2

(RelLU)

[Add)

(MatMuI

i®

43

Variable Node
h = RELU(Wx + b)

b = tf.Variable(tf.zeros((100,)))

tf.Variable(initial value=None,
trainable=None,
name=None)

 Variables are stateful nodes
which output their current value.

« State Is retained across multiple
executions of a graph

* mostly parameters

(RelLU)

(Add)

[MatTMuIJ

&

44

h = RELU(Wx + b)

tf.linalg.matmul(a, b): multiply two matrices
tf.math.add(a, b): Add elementwise
tf.nn.relu(a): Activate with elementwise
rectified linear function

Pytorch:

torc
torc
torc

n.matmu
n.add(a,

N.nN.Rel

Operation Node

0 x<=0
RelLu(x) =

(@, b)

J(a)

45

Implementing Operation Node

* need to define the input nodes and forward/backward func

class AddOperation(Operation):
define Add operation a+b
def _init_ (self, a, b):
a, b are input nodes.
super(). _init_ ([a, b])

def forward(self, a, b): # calculating the result of op
returna + b

def backward(self, upstream grad):

46

Defining Loss as a node

» Use placeholder for labels

 Build loss node using labels and prediction

prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

47

Gradient Computation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

o tf.train.GradientDescentOptimizer is an Optimizer object

« tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds
optimization operation to computation graph

« TensorFlow graph nodes have attached gradient operations

« Gradient with respect to parameters computed with Auto
Differentiation (recall previous)

48

Session

In TF v1, to deploy graph with a
session: a binding to a particular
execution context (e.g. CPU,
GPU)

with tf.Session() as s:

(ReLU)

(Add)

T

(MatMul)

¢

CPU

[\

GPU

s.run()

49

1 tmport tensorflow as tf

3 with tf.S5ession() as sess:

a = tf.constant(15, name="a")
b = tf.constant(5, name="b")

prod = tf.multiply(a, b, name="Multiply")
sum = tf.add(a, b, name="Add")
res = tf.divide(prod, sum, name="Divide")

out sess.run(res)
print{out)

Implementing Topological Sort

* For each Operation node (using isinstance to check)

o recursively find the incoming nodes, visit them first and add node
to visited nodes.

51

Implementing Session

* Apply topological sort on the computation graph starting
from the final operation node

* Feeding data using a dictionary that maps Placeholder to
actual data array

« Compute value for each node:
o If a node is a placeholder, it should take value from feed_dict
o If a node is variable or constant, it just use the node's value

o If a node is an operation, it should get the node's input_nodes,
and then apply forward

52

Code Practice: Implement Computation
Graph

https://github.com/limsystem/limsys code examples/tree/mai
n/mini_tensorflow

Please follow the instructions and fill in the code in

https://github.com/limsystem/limsys code examples/blob/mai

n/mini_tensorflow/mini _tensorflow.ipynb
The full code is provided in

https://github.com/limsystem/limsys code examples/blob/mai

n/mini tensorflow/minit tensorflow full iovnb

53

https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb

Summary

Learning parameters of an NN needs gradient calculation

Computation Graph
o to perform computation: topological traversal along the DAG

Auto Differentiation
o building backward computation graph for gradient calculation

Put together: Deep Learning Framework

1. Define program i.e., symbolic computation graph w/
placeholders/variable/operation nodes

2. Executes (optimized) computation graph on a set of available devices

54

Additional Reading

» Auto Diff survey, https://arxiv.org/abs/1502.05767

* The Elements of Differentiable Programming (Book),
https://arxiv.org/abs/2403.14606

* TensorFlow: A System for Large-Scale Machine Learning,
OSDI 2016.

55

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606

* ONn Canvas

Quiz

56

HW2

» https://limsystem.qgithub.io/limsystemhomework/assignment

2/

* join the recitation session this Friday to learn about
mini_torch framework for HW2

o please bring your laptop for coding practice

57

https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/

	Slide 1: Deep Learning Framework and Auto Differentiation
	Slide 2: Recap of GPU Acceleration
	Slide 3: Today’s Topic
	Slide 4: A Simple Feedforward Neural Network
	Slide 5: The Learning Problem
	Slide 6: Training Loss for Classification
	Slide 7: Today’s focus (using PyTorch Example)
	Slide 8: Generic Iterative Learning Algorithm
	Slide 9: Gradient Descent
	Slide 10: (Stochastic) Gradient Descent Algorithm
	Slide 11: How to compute the gradient for every parameter in an “arbitrary network”?
	Slide 12: Today’s Topic
	Slide 13: Computation Graph
	Slide 14
	Slide 15: Topological Sort
	Slide 19: Today’s Topic
	Slide 20: Gradient Calculation
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Partial derivatives for Vectors
	Slide 25: Vector Jacobian Product
	Slide 26: Example
	Slide 28: Auto Differentiation
	Slide 29
	Slide 30
	Slide 31: Implementing Backward Pass (important for HW2)
	Slide 32: Build the AutoDiff Graph
	Slide 33: Use AutoGrad
	Slide 34: How to check the correctness of gradient
	Slide 35: Quiz
	Slide 36: Today’s Topic
	Slide 37: Deep Learning Frameworks (also for LLMs)
	Slide 38
	Slide 39: Deep Learning Framework Design Principles
	Slide 40: Basic Components (follows tensorflow)
	Slide 41: All data are represented Tensor
	Slide 42: Example Computation Graph in Tensorflow
	Slide 43: Placeholder Node (Tensorflow v1)
	Slide 44: Variable Node
	Slide 45: Operation Node
	Slide 46: Implementing Operation Node
	Slide 47: Defining Loss as a node
	Slide 48: Gradient Computation
	Slide 49: Session
	Slide 50
	Slide 51: Implementing Topological Sort
	Slide 52: Implementing Session
	Slide 53: Code Practice: Implement Computation Graph
	Slide 54: Summary
	Slide 55: Additional Reading
	Slide 56: Quiz
	Slide 57: HW2

