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• Tiling for efficient matrix computation

• Coalesced memory access

• Sparse matrix representation and multiplication

• cuBLAS
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Recap of GPU Acceleration



• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework
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Today’s Topic



• Neural network layers

o Embedding (lookup table)

o Linear 

o Relu

o Average pooling

o Softmax
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A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg



• Given a training set of input-output pairs 𝐷
= {(𝑥𝑛, 𝑦𝑛)}𝑛=1

𝑁

o 𝑥𝑛 and 𝑦𝑛 may both be vectors

• To find the model parameters such that the model 
produces the most accurate output for each 
training input
o Or a close approximation of it

• Learning the parameter of a neural network is an 
instance!
o The network architecture is given
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The Learning Problem

𝑦

𝑿



• 𝑥𝑛, 𝑦𝑛  are data and label pairs for training

• Cross entropy

ℒ(𝜃) =
1

𝑁
∑

𝑛=1

𝑁

− log𝑓(𝑥𝑛)𝑦𝑛

• Pytorch CrossEntropyLoss is implemented as

oNegative Likelihood on logits (instead of log of softmax)
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Training Loss for Classification



loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward()
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Today’s focus (using PyTorch Example)

how is backward implemented?

how does it work on any network?



• Consider a generic function minimization problem, where x is 
unknown variable

min 𝑓(𝑥)
𝑥

 where 𝑓: ℝ𝑑 → ℝ

• Iterative update algorithm 

𝑥𝑡+1 ← 𝑥𝑡 + Δ

• so that 𝑓(𝑥𝑡+1) ≪ 𝑓(𝑥𝑡)

• How to find Δ
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Generic Iterative Learning Algorithm



• 𝑓(𝑥𝑡 + Δ𝑥) ≈ 𝑓(𝑥𝑡) + Δ𝑥𝑇𝛻𝑓|𝑥𝑡

• To make Δ𝑥𝑇𝛻𝑓|𝑥𝑡
 smallest

o ⇒ Δ𝑥 in the opposite direction of 𝛻𝑓|𝑥𝑡
i.e.Δ𝑥 = −𝛻𝑓|𝑥𝑡

• Update rule: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓|𝑥𝑡

• 𝜂 is a hyper-parameter to control the learning rate
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Gradient Descent



set learning rate eta.

1. set initial parameter 𝜃 ← 𝜃0

2. for epoch = 1 to maxEpoch or until converg:

3.   for each batch in the data:

4.     total_g = 0

5.     for each data (x, y) in data batch:

6. compute error err(f(x; 𝜃) - y)

7. compute gradient 𝑔 =
𝜕err(𝜃)

𝜕𝜃

8. total_g += g

9. update 𝜃 = 𝜃 - eta * total_g / N
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(Stochastic) Gradient Descent Algorithm



• Goal: compute 
𝜕𝑙

𝜕𝑤𝑖
 for every parameter

• Forward computation

• Backpropogation
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How to compute the gradient for every 

parameter in an “arbitrary network”?

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg



• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework
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Today’s Topic



• Calculations on a neural network can be defined using 

computation graph

• Each node denotes a variable or an operation

• Directed edges to connect nodes, indicating the input 

values for operations. 
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Computation Graph

𝑥1 ℎ2 ℎ3

𝑤1

*

relu(.)
ℎ4

𝑤2

*
𝑜5

𝑦1

CEloss
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𝑥1

𝑥3

𝑥5

1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

2.0

*

+

f = x1 +  exp(1.5 * x1 + 2.0 * x2) 
To perform Computation:

1. Topological sorting of all 

nodes

2. Calculate the value for 

each node given its input

x1= 3, x2=0.5



• Put all nodes into un-

processed queue. 

• Repeatedly, find a node 

without incoming edges from 

un-processed nodes

o evaluate its value based on 

operation

o remove the node from the 

queue and add it to processed 

queue
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Topological Sort

𝑥1
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+
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• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework
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Today’s Topic



• To learn a neural network, we need gradient of loss function 

w.r.t. parameters. 

• Parameters are also variables, and represented as nodes in 

the computation graph.

• Chain rule => backpropogation
𝑑𝑦(𝑧)

𝑑𝑥
=

𝑑𝑦(𝑧)

𝑑𝑧
∙

𝑑𝑧

𝑑𝑥
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Gradient Calculation
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) Computing the derivatives 
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) Computing the derivatives 
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

𝑥7 = 1
𝑥6 = 1

𝑥5 =
𝜕𝑦

𝜕𝑥6
∙

𝜕𝑥6

𝜕𝑥5
= 𝑥6 ∙ exp(𝑥5)

𝑥4 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥4
= 𝑥5

𝑥3 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥3
= 𝑥5

𝑤2 =
𝜕𝑦

𝜕𝑥4
∙

𝜕𝑥4

𝜕𝑤2
= 𝑥4 ∙ 𝑥2

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+
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𝑦 𝑧

𝑥 ҧ𝑥 = ത𝑦 ∙
𝜕𝑦

𝜕𝑥
+ ҧ𝑧 ∙

𝜕𝑧

𝜕𝑥

…

Node with multiple outgoing edges



Jacobian

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2
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Partial derivatives for Vectors

row: keep y index, iter x index

col: keep x index, iter y index



𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

• computing the partial derivative for each node (vector)

ҧ𝑥 = 𝐽𝑇 ത𝑦
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Vector Jacobian Product



𝑦 = 𝑊𝑥
ҧ𝑥 = 𝑊𝑇 ത𝑦
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Example



• Instead of explicitly computing the derivatives (gradients) for 

each data sample following the backward direction

• Construct a computation graph for gradient calculation for 

every node 

• Applicable to any input data (and output=loss)
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Auto Differentiation
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) Computing the derivatives 
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7
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𝑥4

𝑤2

= 2.0

*

+



30

y=x1 +  exp(1.5 * x1 + 2.0 * x2) 
x1= 3, x2=0.5
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*
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Implementing Backward Pass 

(important for HW2)
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Build the AutoDiff Graph
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Use AutoGrad



• use finite differences to check our gradient calculations
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
=

𝑓 𝑥1 + ℎ, 𝑥2 − 𝑓(𝑥1 − ℎ, 𝑥2)

2ℎ

• Care the precision!

oUse double precision (fp64)

o Pick a small ℎ = 0.000001

oCompute the forward difference through the graph twice
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How to check the correctness of gradient



Quiz
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𝑥1

𝑥2

𝑥4

𝑤
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+
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= 1
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-
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• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework
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Today’s Topic



• expressive to specify any neural networks

o support future custom operators/layers

• productive for ML engineers

o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation 

manually)

• efficient in large-scale training and inference

o automatically scale to data and model size

o automatic hardware acceleration
37

Deep Learning Frameworks (also for LLMs)
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Aspect PyTorch TensorFlow JAX NumPy

Primary Use Deep learning Deep learning
numerical and 

ML computing

numerical 

computing

Programming 

Paradigm

Dynamic (eager 

execution)

Static (Graph 

mode, or Eager)

Functional 

transformations
Procedural

Autograd
dynamic comp 

graph
static comp graph

Functional-based 

with grad/jit
Not available

Hardware 

Support
CPU, GPU, TPU CPU, GPU, TPU CPU, GPU, TPU CPU only

Ease of Use Pythonic
a bit learning 

curve

Pythonic and 

functional

Very easy, native 

python

Ecosystem
PyTorch Lightning, 

TorchVision

TensorBoard, 

TensorFlow 

Extended

integrates with 

NumPy
NA

Parallelism
Multi-GPU with 

DataParallel or DDP

Multi-GPU/TPU 

via tf.distribute

Multi-GPU/TPU 

via pmap
No parallelism



• Dataflow graphs (computation graph) of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders, 

essentially constructing the computation graph

2. Executes optimized version of program on set of available 

devices

39

Deep Learning Framework Design 

Principles



• A Computation Graph, which contains these nodes

o Placeholder: to store the input data (as tensors/multi-dim array)

o Variable: to store the network parameters

oConstant: some static data

oOperation: the mathmatical operations for each neural network 

layer, the input are any of these nodes, result is stored in output
▪ each operation needs to define forward and backward operation

• Session: execution environment

o Perform computation via the topological sort of the nodes

40

Basic Components (follows tensorflow)



• A tensor is a multi-dimensional array. generalization to vector 

and matrix

tf.constant([[1, 2], [3, 4]])

is a 2x2 tensor with element type int32

tf.Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32) 
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All data are represented Tensor

Pytorch: 
torch.tensor([[1., 2.], [3., 4.]])
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Example Computation Graph in Tensorflow

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)
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Placeholder Node (Tensorflow v1)

• Represent Inputs, Labels, …

• value is fed in at execution time

• No need to explicitly define 

Placeholder in Tensorflow v2

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

x = tf.placeholder(tf.float32, (1, 784))



• Variables are stateful nodes 

which output their current value. 

• State is retained across multiple 

executions of a graph

• mostly parameters
44

Variable Node
ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

b = tf.Variable(tf.zeros((100,)))
tf.Variable(initial_value=None,   
  trainable=None,
  name=None)
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Operation Node

tf.linalg.matmul(a, b): multiply two matrices

tf.math.add(a, b): Add elementwise

tf.nn.relu(a): Activate with elementwise 

rectified linear function
ReLu(x) = 

0, x <= 0

x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Pytorch:

torch.matmul(a, b)

torch.add(a, b)

torch.nn.ReLU(a)



• need to define the input nodes and forward/backward func
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Implementing Operation Node

class AddOperation(Operation):
  # define Add operation a+b
  def __init__(self, a, b):
    # a, b are input nodes. 
    super().__init__([a, b])

  def forward(self, a, b): # calculating the result of op
    return a + b

  def backward(self, upstream_grad):
    …



• Use placeholder for labels

• Build loss node using labels and prediction
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Defining Loss as a node

prediction = tf.nn.softmax(...)  #Output of neural network

label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)



• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds 

optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto 

Differentiation (recall previous)

48

Gradient Computation
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
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Session

CPU

GPU

In TF v1, to deploy graph with a 

session: a binding to a particular 

execution context (e.g. CPU, 

GPU)

with tf.Session() as s:

  …

  s.run() 
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• For each Operation node (using isinstance to check)

o recursively find the incoming nodes, visit them first and add node 

to visited nodes. 
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Implementing Topological Sort



• Apply topological sort on the computation graph starting 

from the final operation node

• Feeding data using a dictionary that maps Placeholder to 

actual data array

• Compute value for each node: 

o If a node is a placeholder, it should take value from feed_dict

o If a node is variable or constant, it just use the node's value

o If a node is an operation, it should get the node's input_nodes, 

and then apply forward
52

Implementing Session



53

Code Practice: Implement Computation 

Graph
https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/mini_tensorflow 

Please follow the instructions and fill in the code in 

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow.ipynb

The full code is provided in 

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow_full.ipynb 

https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb


• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

• Put together: Deep Learning Framework 

1. Define program i.e., symbolic computation graph w/ 

placeholders/variable/operation nodes

2. Executes (optimized) computation graph on a set of available devices
54

Summary



• Auto Diff survey, https://arxiv.org/abs/1502.05767 

• The Elements of Differentiable Programming (Book), 

https://arxiv.org/abs/2403.14606 

• TensorFlow: A System for Large-Scale Machine Learning, 

OSDI 2016.
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Additional Reading

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606


• on canvas

56

Quiz



• https://llmsystem.github.io/llmsystemhomework/assignment

_2/

• join the recitation session this Friday to learn about 

mini_torch framework for HW2

o please bring your laptop for coding practice
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HW2

https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/
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