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Recap of GPU Acceleration
Tiling for efficient matrix computation
Coalesced memory access

Sparse matrix representation and multiplication

CUBLAS



Today's Topic
—> ¢ Learning algorithm for Neural Network
« Computation Graph
 Auto Differentiation

« Put Together: Implementing a Deep Learning Framework



A Simple Feedforward Neural Network

 Neural network layers Softmax

e Elmbeddlng (lookup table) AV

o Linear 1

o Relu Linear

o Average pooling x

o Softmax Rglu
Linear

Embedding

‘It Is a good movie”



The Learning Problem

« Glven a training set of input-output pairs D

= {(xn, Yn)}11\11=1
o x, and y,, may both be vectors

* To find the model parameters such that the model
produces the most accurate output for each
training input

o Or a close approximation of it

— —_— ~ —~—

» Learning the parameter of a neural networkisan
instance!

o The network architecture is given



Training Loss for Classification
e (x,,,Vy,) are data and label pairs for training
« Cross entropy

1 N
LO) =5 2 — o8] (Xn)y,

» Pytorch CrossEntropylLoss is implemented as
o Negative Likelihood on logits (instead of log of softmax)



Today's focus (using PyTorch Example)

loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward() <

how is backward implemented?
how does it work on any network?



Generic lterative Learning Algorithm

» Consider a generic function minimization problem, where X is
unknown variable

min f(x) where f:R? - R
X

* |terative update algorithm
Xer1 < Xe T A

* sothat f(X¢41) < f(X¢)

e How to find A



Gradient Descent
o f(xy +Ax) = f(xy) + Ax"Vf]y,

» To make Ax"Vf],, smallest

o = Ax in the opposite direction of Vf |, reAx = =Vf],,
» Update rule: xp 41 = x¢ — NV,

® 1 Is a hyper-parameter to control the learning rate



(Stochastic) Gradient Descent Algorithm

set learning rate eta.
1. set initial parameter 6 < 6,
2. for epoch =1 to maxEpoch or until converg:
3. for each batch in the data:
total g=0
for each data (x, y) in data batch:

derr(0)
00

compute gradient g =

total g+=¢

4
5
6. compute error err(f(x; 8) - y)
7/
8
9. update 8 =0 -eta *total g/ N



How to compute the gradient for every
parameter in an “arbitrary network™?

ol Softmax
« Goal: compute - for every parameter ;
l
Avg
« Forward computation [
Linear
» Backpropogation “
Relu
Linear
Embedding

‘It is a good movie”



Today's Topic
» Learning algorithm for Neural Network
=+ Computation Graph
 Auto Differentiation

« Put Together: Implementing a Deep Learning Framework
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Computation Graph

 Calculations on a neural network can be defined using
computation graph

* Each node denotes a variable or an operation

» Directed edges to connect nodes, indicating the input
values for operations.

y 2/ > CEloss
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X1= 3, x2=0.5
f=x1+ exp(1.5*x1+2.0*x2)

To perform Computation:

1. Topological sorting of all
nodes

2. Calculate the value for
each node given its input

14



Topological Sort

» Put all nodes into un-
processed queue.

« Repeatedly, find a node
without incoming edges from
un-processed nodes

o evaluate Its value based on
operation

o remove the node from the
queue and add it to processed
queue
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Today's Topic
» Learning algorithm for Neural Network
« Computation Graph
=« Auto Differentiation

« Put Together: Implementing a Deep Learning Framework
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Gradient Calculation

* To learn a neural network, we need gradient of loss function
w.r.t. parameters.

« Parameters are also variables, and represented as nodes in
the computation graph.

« Chain rule => backpropogation
dy(z) dy(z) dz

dx dz dx
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x1=3, x2=0.5 - vatives 2
v=x1+ exp(1.5* x1 + 2.0 * x2) Computing the derivatives a—;vi
dy

Define x; = P
l




X1= 3, x2=0.5
y=x1+ exp(1.5*x1 + 2.0 * x2)

Computing the derivatives a—y_

0x;
Definefiz%
x7 =1
Xe = 1

_ 0y 0Ox¢ __

5 = 8x6.0x5 = Xe * €xXp(Xs)
— dy 6x5__
x4_8x5 0x,
__ 0y 0Ox5 __
x3_8x5 0x3_x5

__ 0y 0Ox4 __

W- = X3 * Xy

B aX4 aWZ 22



Node with multiple outgoing edges

_ 6y+_ 0z
r=Y 0x z dx
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Partial derivatives for Vectors

Jacobian

_ 0y
=22 =

J

[on
x4

\ox:

9y,
dx,
9y,
dx,

row: keep y index, iter x index

col: keep x Index, iter y index



Vector Jacobian Product

(91 on
0y | 0xq Ox,
T ox dy, 0y,

\on 7%,

J

« computing the partial derivative for each node (vector)
x=]"y
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Auto Differentiation

* Instead of explicitly computing the derivatives (gradients) for
each data sample following the backward direction

« Construct a computation graph for gradient calculation for
every node

» Applicable to any input data (and output=Iloss)
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x1=3, x2=0.5 - vatives 2
v=x1+ exp(1.5* x1 + 2.0 * x2) Computing the derivatives a—;vi
dy

Define x; = P
l




x1= 3, x2=0.5
y=x1+ exp(1.5*x1 +2.0 " x2)

X153




Implementing Backward Pass
(imoortant for HW2)

v def backward_pass(g, end_node):
"""Backpropagation.

Traverse computation graph backwards in topological order from the end node.
For each node, compute local gradient contribution and accumulate.
outgrads = {end_node: g}
for node in toposort({end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.reclpe
for argnum, parent in ziplargnums, node.parents):
# Lookup vector-Jacobian product (gradient) function for this
# function/argument.
vip = primitive_vjps([fun] [argnum]

# Compute vector-Jacobian product (gradient) contribution due to
# parent node's use im this function.

parent_grad = viploutgrad, value, =args, *xkwargs) def add_nutgradﬁiprev_g, ﬂ}!

" Add gradient contributions together.

# Save vector-Jacobian product (gradient) for upstream nodes. if prev_q 15 Mone:
# Sum contributions with all others also using parent's output. return g
outgrads [parent] = add_outgrads{outgrads.get({parent), parent_grad) return prev_g + g

return outgrad
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Build the AutoDiff Graph

def make_vip(fun, x):
""“Make function for vector-Jacobian product.

Args:
fun: single-arg function. Jacobilan derived from this.
X! ndarray. Point to differentiate about.

Returns:
vijp: single-arg function. vector -> vector-Jacobian[fun, x] proc
end_value: end value = fun(start_node)

start_node = Node.new_root()
end_value, end_node = trace(start_node, fun, x)
if end_node is None:

def vjp(g): return np.zeros_like(x)
else:

def vjp(g): return backward_pass(g, end_node)
return vip, end_value

def grad({fun, argnum=@):
"""Constructs gradient function.

Given a function fun(x), returns a function fun'(x) that returns the
gradient of fun(x) wrt x.

Args:
fun: single-argument function. ndarray == ndarray.
argnum: integer. Index of argument to take derivative wrt.

Returns:
gradfun: function that takes same args as fun(), but returns the gradient
wrt to fun()'s argnum-th argument.
def gradfun(*args, #+kwargs):
# Replace args[argnum] with x. Define a single-argument function to
# compute derivative wrt.
unary_fun = lambda x: fun(*subval{args, argnum, x), #*kwargs)

# Construct vector=Jacobian product
vjp, ans = make_vjp(unary_fun, args[argnum])
return vjp(np.ones_like(ans))

return gradfun
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Use AutoGrad

# Define training objective
def objective(params, iter):
idx = batch_indices(iter)
return -log_posterior(params, train_images[idx], train_labels[idx], L2_req)

# Get gradient of objective using autograd.
objective_grad = grad(objective)

v def neural_net_predict(params, inputs):
"""Implements a deep neural network for classification.
params is a list of (weights, bias) tuples.
inputs is an (N x D) matrix.
returns normalized class log-probabilities."""
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = np.tanh(outputs)
return outputs - logsumexp(outputs, axis=1, keepdims=True)

def log_posterior(params, inputs, targets, L2_req):
log_prior = -L2_reg * 12_norm(params)
log_lik = np.sum(neural_net_predict(params, inputs) x targets)
return log_prior + log_lik
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How to check the correctness of gradient

* use finite differences to check our gradient calculations
0f (%1, %2) _ f(xy + h,x2) — f(x1 — h,x3)
dx4 2h

» Care the precision!

o Use double precision (fp64)
o Pick asmall h = 0.000001
o Compute the forward difference through the graph twice
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Quiz



Today's Topic
» Learning algorithm for Neural Network
« Computation Graph
 Auto Differentiation

=« Put Together: Implementing a Deep Learning Framework
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Deep Learning Frameworks (also for LLMSs)

« expressive to specify any neural networks
o support future custom operators/layers

 productive for ML engineers
o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation
manually)

» efficient in large-scale training and inference
o automatically scale to data and model size
o automatic hardware acceleration
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Primary Use

Programming
Paradigm

Autograd

Hardware
Support

Ease of Use

Ecosystem

Parallelism

PyTorch

Deep learning

Dynamic (eager
execution)

dynamic comp
graph

CPU, GPU, TPU

Pythonic

PyTorch Lightning,
TorchVision

Multi-GPU with

DataParallel or DDP via tf.distribute

TensorFlow

Deep learnin numerical and numerical
b S ML computing  computing

Static (Graph Functional | Procedural

mode, or Eager) transformations

Functional-based

static comp graph T Not available
CPU, GPU, TPU CPU, GPU, TPU CPU only

a bit learning Pythonic and Very easy, native
curve functional python
TensorBoard, Integrates with

TensorFlow N n%;’ W NA

Extended Y

Multi-GPU/TPU  Multi-GPU/TPU

: No parallelism
via pmap
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Deep Learning Framework Design
Principles

« Dataflow graphs (computation graph) of primitive operators

» Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders,
essentially constructing the computation graph

2. Executes optimized version of program on set of available
devices

39



Basic Components (follows tensorflow)

« A Computation Graph, which contains these nodes
o Placeholder: to store the input data (as tensors/multi-dim array)
o Variable: to store the network parameters
o Constant: some static data

o Operation: the mathmatical operations for each neural network

layer, the input are any of these nodes, result is stored in output
= each operation needs to define forward and backward operation

* Session: execution environment
o Perform computation via the topological sort of the nodes

40



All data are represented Tensor

* Atensor is a multi-dimensional array. generalization to vector
and matrix

tf.constant([[1, 2], [3, 4]])
IS a 2x2 tensor with element type int32

tf. Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32)

Pytorch:
torch.tensor([[1., 2.], [3., 4.]])

41



Example Computation Graph in Tensorflow

h = RELU(Wx + b)

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tfVariable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

( ReLU )

!

(Add)

(MatMul)

TR
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e valueis

Placeholder Node (Tensorflow v1)
h = RELU(Wx + b)

x = tf.placeholder(tf.float32, (1, 784))

Represent Inputs, Labels, ...

No need

Placeho

fed in at

fo exp
der in

execution time
icitly define

Tensorflow v2

( RelLU )

[Add)

(MatMuI

i®
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Variable Node
h = RELU(Wx + b)

b = tf.Variable(tf.zeros((100,)))

tf.Variable(initial value=None,
trainable=None,
name=None)

 Variables are stateful nodes
which output their current value.

« State Is retained across multiple
executions of a graph

* mostly parameters

( RelLU )

( Add )

[MatTMuIJ

&
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h = RELU(Wx + b)

tf.linalg.matmul(a, b): multiply two matrices
tf.math.add(a, b): Add elementwise
tf.nn.relu(a): Activate with elementwise
rectified linear function

Pytorch:

torc
torc
torc

n.matmu
n.add(a,

N.nN.Rel

Operation Node

0 x<=0
RelLu(x) =

(@, b)

J(a)
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Implementing Operation Node

* need to define the input nodes and forward/backward func

class AddOperation(Operation):
# define Add operation a+b
def _init_ (self, a, b):
# a, b are input nodes.
super(). _init_ ([a, b])

def forward(self, a, b): # calculating the result of op
returna + b

def backward(self, upstream grad):
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Defining Loss as a node

» Use placeholder for labels

 Build loss node using labels and prediction

prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)
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Gradient Computation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

o tf.train.GradientDescentOptimizer is an Optimizer object

« tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds
optimization operation to computation graph

« TensorFlow graph nodes have attached gradient operations

« Gradient with respect to parameters computed with Auto
Differentiation (recall previous)
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Session

In TF v1, to deploy graph with a
session: a binding to a particular
execution context (e.g. CPU,
GPU)

with tf.Session() as s:

( ReLU )

( Add )

T

(MatMul)

¢

CPU

[\

GPU

s.run()
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1 tmport tensorflow as tf

3 with tf.S5ession() as sess:

a = tf.constant(15, name="a")
b = tf.constant(5, name="b")

prod = tf.multiply(a, b, name="Multiply")
sum = tf.add(a, b, name="Add")
res = tf.divide(prod, sum, name="Divide")

out sess.run(res)
print{out)




Implementing Topological Sort

* For each Operation node (using isinstance to check)

o recursively find the incoming nodes, visit them first and add node
to visited nodes.
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Implementing Session

* Apply topological sort on the computation graph starting
from the final operation node

* Feeding data using a dictionary that maps Placeholder to
actual data array

« Compute value for each node:
o If a node is a placeholder, it should take value from feed_dict
o If a node is variable or constant, it just use the node's value

o If a node is an operation, it should get the node's input_nodes,
and then apply forward
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Code Practice: Implement Computation
Graph

https://github.com/limsystem/limsys code examples/tree/mai
n/mini_tensorflow

Please follow the instructions and fill in the code in

https://github.com/limsystem/limsys code examples/blob/mai

n/mini_tensorflow/mini _tensorflow.ipynb
The full code is provided in

https://github.com/limsystem/limsys code examples/blob/mai

n/mini tensorflow/minit tensorflow full iovnb
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https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb

Summary

Learning parameters of an NN needs gradient calculation

Computation Graph
o to perform computation: topological traversal along the DAG

Auto Differentiation
o building backward computation graph for gradient calculation

Put together: Deep Learning Framework

1. Define program i.e., symbolic computation graph w/
placeholders/variable/operation nodes

2. Executes (optimized) computation graph on a set of available devices
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Additional Reading

» Auto Diff survey, https://arxiv.org/abs/1502.05767

* The Elements of Differentiable Programming (Book),
https://arxiv.org/abs/2403.14606

* TensorFlow: A System for Large-Scale Machine Learning,
OSDI 2016.
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https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606

* ONn Canvas

Quiz
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HW2

» https://limsystem.qgithub.io/limsystemhomework/assignment

2/

* join the recitation session this Friday to learn about
mini_torch framework for HW2

o please bring your laptop for coding practice
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