
Deep Learning Framework

and Auto Differentiation

Lei Li

• Tiling for efficient matrix computation

• Coalesced memory access

• Sparse matrix representation and multiplication

• cuBLAS

2

Recap of GPU Acceleration

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework

3

Today’s Topic

• Neural network layers

o Embedding (lookup table)

o Linear

o Relu

o Average pooling

o Softmax

4

A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

• Given a training set of input-output pairs 𝐷
= {(𝑥𝑛, 𝑦𝑛)}𝑛=1

𝑁

o 𝑥𝑛 and 𝑦𝑛 may both be vectors

• To find the model parameters such that the model
produces the most accurate output for each
training input
o Or a close approximation of it

• Learning the parameter of a neural network is an
instance!
o The network architecture is given

5

The Learning Problem

𝑦

𝑿

• 𝑥𝑛, 𝑦𝑛 are data and label pairs for training

• Cross entropy

ℒ(𝜃) =
1

𝑁
∑

𝑛=1

𝑁

− log𝑓(𝑥𝑛)𝑦𝑛

• Pytorch CrossEntropyLoss is implemented as

oNegative Likelihood on logits (instead of log of softmax)

6

Training Loss for Classification

loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward()

7

Today’s focus (using PyTorch Example)

how is backward implemented?

how does it work on any network?

• Consider a generic function minimization problem, where x is
unknown variable

min 𝑓(𝑥)
𝑥

 where 𝑓: ℝ𝑑 → ℝ

• Iterative update algorithm

𝑥𝑡+1 ← 𝑥𝑡 + Δ

• so that 𝑓(𝑥𝑡+1) ≪ 𝑓(𝑥𝑡)

• How to find Δ

8

Generic Iterative Learning Algorithm

• 𝑓(𝑥𝑡 + Δ𝑥) ≈ 𝑓(𝑥𝑡) + Δ𝑥𝑇𝛻𝑓|𝑥𝑡

• To make Δ𝑥𝑇𝛻𝑓|𝑥𝑡
 smallest

o ⇒ Δ𝑥 in the opposite direction of 𝛻𝑓|𝑥𝑡
i.e.Δ𝑥 = −𝛻𝑓|𝑥𝑡

• Update rule: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓|𝑥𝑡

• 𝜂 is a hyper-parameter to control the learning rate

9

Gradient Descent

set learning rate eta.

1. set initial parameter 𝜃 ← 𝜃0

2. for epoch = 1 to maxEpoch or until converg:

3. for each batch in the data:

4. total_g = 0

5. for each data (x, y) in data batch:

6. compute error err(f(x; 𝜃) - y)

7. compute gradient 𝑔 =
𝜕err(𝜃)

𝜕𝜃

8. total_g += g

9. update 𝜃 = 𝜃 - eta * total_g / N
10

(Stochastic) Gradient Descent Algorithm

• Goal: compute
𝜕𝑙

𝜕𝑤𝑖
 for every parameter

• Forward computation

• Backpropogation

11

How to compute the gradient for every

parameter in an “arbitrary network”?

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework

12

Today’s Topic

• Calculations on a neural network can be defined using

computation graph

• Each node denotes a variable or an operation

• Directed edges to connect nodes, indicating the input

values for operations.

13

Computation Graph

𝑥1 ℎ2 ℎ3

𝑤1

*

relu(.)
ℎ4

𝑤2

*
𝑜5

𝑦1

CEloss

14

𝑥1

𝑥3

𝑥5

1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

2.0

*

+

f = x1 + exp(1.5 * x1 + 2.0 * x2)
To perform Computation:

1. Topological sorting of all

nodes

2. Calculate the value for

each node given its input

x1= 3, x2=0.5

• Put all nodes into un-

processed queue.

• Repeatedly, find a node

without incoming edges from

un-processed nodes

o evaluate its value based on

operation

o remove the node from the

queue and add it to processed

queue
15

Topological Sort

𝑥1

𝑥3

𝑥5

1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

2.0

*

+

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework

19

Today’s Topic

• To learn a neural network, we need gradient of loss function

w.r.t. parameters.

• Parameters are also variables, and represented as nodes in

the computation graph.

• Chain rule => backpropogation
𝑑𝑦(𝑧)

𝑑𝑥
=

𝑑𝑦(𝑧)

𝑑𝑧
∙

𝑑𝑧

𝑑𝑥

20

Gradient Calculation

21

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

22

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

𝑥7 = 1
𝑥6 = 1

𝑥5 =
𝜕𝑦

𝜕𝑥6
∙

𝜕𝑥6

𝜕𝑥5
= 𝑥6 ∙ exp(𝑥5)

𝑥4 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥4
= 𝑥5

𝑥3 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥3
= 𝑥5

𝑤2 =
𝜕𝑦

𝜕𝑥4
∙

𝜕𝑥4

𝜕𝑤2
= 𝑥4 ∙ 𝑥2

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

23

𝑦 𝑧

𝑥 ҧ𝑥 = ത𝑦 ∙
𝜕𝑦

𝜕𝑥
+ ҧ𝑧 ∙

𝜕𝑧

𝜕𝑥

…

Node with multiple outgoing edges

Jacobian

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

24

Partial derivatives for Vectors

row: keep y index, iter x index

col: keep x index, iter y index

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

• computing the partial derivative for each node (vector)

ҧ𝑥 = 𝐽𝑇 ത𝑦

25

Vector Jacobian Product

𝑦 = 𝑊𝑥
ҧ𝑥 = 𝑊𝑇 ത𝑦

26

Example

• Instead of explicitly computing the derivatives (gradients) for

each data sample following the backward direction

• Construct a computation graph for gradient calculation for

every node

• Applicable to any input data (and output=loss)

28

Auto Differentiation

29

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

30

y=x1 + exp(1.5 * x1 + 2.0 * x2)
x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

𝑥7

= 1

𝑥6

𝑥4

𝑥5

exp(.)

id

𝑥5→6 *

id

𝑤2*𝑥2

*

𝑥3
id

𝑤1*
𝑥1

𝑥1→3

*

+

31

Implementing Backward Pass

(important for HW2)

32

Build the AutoDiff Graph

33

Use AutoGrad

• use finite differences to check our gradient calculations
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
=

𝑓 𝑥1 + ℎ, 𝑥2 − 𝑓(𝑥1 − ℎ, 𝑥2)

2ℎ

• Care the precision!

oUse double precision (fp64)

o Pick a small ℎ = 0.000001

oCompute the forward difference through the graph twice

34

How to check the correctness of gradient

Quiz

35

𝑥1

𝑥2

𝑥4

𝑤

*

𝑥6

exp(.)

𝑥7

+

𝑥5

= 1

𝑥3

-

1/x

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Put Together: Implementing a Deep Learning Framework

36

Today’s Topic

• expressive to specify any neural networks

o support future custom operators/layers

• productive for ML engineers

o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation

manually)

• efficient in large-scale training and inference

o automatically scale to data and model size

o automatic hardware acceleration
37

Deep Learning Frameworks (also for LLMs)

38

Aspect PyTorch TensorFlow JAX NumPy

Primary Use Deep learning Deep learning
numerical and

ML computing

numerical

computing

Programming

Paradigm

Dynamic (eager

execution)

Static (Graph

mode, or Eager)

Functional

transformations
Procedural

Autograd
dynamic comp

graph
static comp graph

Functional-based

with grad/jit
Not available

Hardware

Support
CPU, GPU, TPU CPU, GPU, TPU CPU, GPU, TPU CPU only

Ease of Use Pythonic
a bit learning

curve

Pythonic and

functional

Very easy, native

python

Ecosystem
PyTorch Lightning,

TorchVision

TensorBoard,

TensorFlow

Extended

integrates with

NumPy
NA

Parallelism
Multi-GPU with

DataParallel or DDP

Multi-GPU/TPU

via tf.distribute

Multi-GPU/TPU

via pmap
No parallelism

• Dataflow graphs (computation graph) of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders,

essentially constructing the computation graph

2. Executes optimized version of program on set of available

devices

39

Deep Learning Framework Design

Principles

• A Computation Graph, which contains these nodes

o Placeholder: to store the input data (as tensors/multi-dim array)

o Variable: to store the network parameters

oConstant: some static data

oOperation: the mathmatical operations for each neural network

layer, the input are any of these nodes, result is stored in output
▪ each operation needs to define forward and backward operation

• Session: execution environment

o Perform computation via the topological sort of the nodes

40

Basic Components (follows tensorflow)

• A tensor is a multi-dimensional array. generalization to vector

and matrix

tf.constant([[1, 2], [3, 4]])

is a 2x2 tensor with element type int32

tf.Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32)

41

All data are represented Tensor

Pytorch:
torch.tensor([[1., 2.], [3., 4.]])

42

Example Computation Graph in Tensorflow

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

43

Placeholder Node (Tensorflow v1)

• Represent Inputs, Labels, …

• value is fed in at execution time

• No need to explicitly define

Placeholder in Tensorflow v2

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

x = tf.placeholder(tf.float32, (1, 784))

• Variables are stateful nodes

which output their current value.

• State is retained across multiple

executions of a graph

• mostly parameters
44

Variable Node
ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

b = tf.Variable(tf.zeros((100,)))
tf.Variable(initial_value=None,
 trainable=None,
 name=None)

45

Operation Node

tf.linalg.matmul(a, b): multiply two matrices

tf.math.add(a, b): Add elementwise

tf.nn.relu(a): Activate with elementwise

rectified linear function
ReLu(x) =

0, x <= 0

x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Pytorch:

torch.matmul(a, b)

torch.add(a, b)

torch.nn.ReLU(a)

• need to define the input nodes and forward/backward func

46

Implementing Operation Node

class AddOperation(Operation):
 # define Add operation a+b
 def __init__(self, a, b):
 # a, b are input nodes.
 super().__init__([a, b])

 def forward(self, a, b): # calculating the result of op
 return a + b

 def backward(self, upstream_grad):
 …

• Use placeholder for labels

• Build loss node using labels and prediction

47

Defining Loss as a node

prediction = tf.nn.softmax(...) #Output of neural network

label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds

optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto

Differentiation (recall previous)

48

Gradient Computation
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

49

Session

CPU

GPU

In TF v1, to deploy graph with a

session: a binding to a particular

execution context (e.g. CPU,

GPU)

with tf.Session() as s:

 …

 s.run()

50

• For each Operation node (using isinstance to check)

o recursively find the incoming nodes, visit them first and add node

to visited nodes.

51

Implementing Topological Sort

• Apply topological sort on the computation graph starting

from the final operation node

• Feeding data using a dictionary that maps Placeholder to

actual data array

• Compute value for each node:

o If a node is a placeholder, it should take value from feed_dict

o If a node is variable or constant, it just use the node's value

o If a node is an operation, it should get the node's input_nodes,

and then apply forward
52

Implementing Session

53

Code Practice: Implement Computation

Graph
https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/mini_tensorflow

Please follow the instructions and fill in the code in

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow.ipynb

The full code is provided in

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow_full.ipynb

https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb

• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

• Put together: Deep Learning Framework

1. Define program i.e., symbolic computation graph w/

placeholders/variable/operation nodes

2. Executes (optimized) computation graph on a set of available devices
54

Summary

• Auto Diff survey, https://arxiv.org/abs/1502.05767

• The Elements of Differentiable Programming (Book),

https://arxiv.org/abs/2403.14606

• TensorFlow: A System for Large-Scale Machine Learning,

OSDI 2016.

55

Additional Reading

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606

• on canvas

56

Quiz

• https://llmsystem.github.io/llmsystemhomework/assignment

_2/

• join the recitation session this Friday to learn about

mini_torch framework for HW2

o please bring your laptop for coding practice

57

HW2

https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/
https://llmsystem.github.io/llmsystemhomework/assignment_2/

	Slide 1: Deep Learning Framework and Auto Differentiation
	Slide 2: Recap of GPU Acceleration
	Slide 3: Today’s Topic
	Slide 4: A Simple Feedforward Neural Network
	Slide 5: The Learning Problem
	Slide 6: Training Loss for Classification
	Slide 7: Today’s focus (using PyTorch Example)
	Slide 8: Generic Iterative Learning Algorithm
	Slide 9: Gradient Descent
	Slide 10: (Stochastic) Gradient Descent Algorithm
	Slide 11: How to compute the gradient for every parameter in an “arbitrary network”?
	Slide 12: Today’s Topic
	Slide 13: Computation Graph
	Slide 14
	Slide 15: Topological Sort
	Slide 19: Today’s Topic
	Slide 20: Gradient Calculation
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Partial derivatives for Vectors
	Slide 25: Vector Jacobian Product
	Slide 26: Example
	Slide 28: Auto Differentiation
	Slide 29
	Slide 30
	Slide 31: Implementing Backward Pass (important for HW2)
	Slide 32: Build the AutoDiff Graph
	Slide 33: Use AutoGrad
	Slide 34: How to check the correctness of gradient
	Slide 35: Quiz
	Slide 36: Today’s Topic
	Slide 37: Deep Learning Frameworks (also for LLMs)
	Slide 38
	Slide 39: Deep Learning Framework Design Principles
	Slide 40: Basic Components (follows tensorflow)
	Slide 41: All data are represented Tensor
	Slide 42: Example Computation Graph in Tensorflow
	Slide 43: Placeholder Node (Tensorflow v1)
	Slide 44: Variable Node
	Slide 45: Operation Node
	Slide 46: Implementing Operation Node
	Slide 47: Defining Loss as a node
	Slide 48: Gradient Computation
	Slide 49: Session
	Slide 50
	Slide 51: Implementing Topological Sort
	Slide 52: Implementing Session
	Slide 53: Code Practice: Implement Computation Graph
	Slide 54: Summary
	Slide 55: Additional Reading
	Slide 56: Quiz
	Slide 57: HW2

