LLIVI OYS

GPU Acceleration

Lel LI

A Language Carnegie Mellon University

Technologies .
Inetitute School of Computer Science

L]

Programming Massively Parallel Processors (41 ed)
https://learning.oreilly.com/library/view/programming-

massively-
parallel/9780323984638/7ss0_link=yes&sso_link_from

o =cmu-edu

CUDA Programming Guide (from Nvidia)
https://docs.nvidia.com/cuda/cuda-programming-guide

Outline: GPU Acceleration techniques
* Tiling (Chap 5)
 Memory parallelism (Chap 5 & 0)

« Sparse Matrix Multiplication

 CUBLAS

Memory Access Efficiency is Critical

FP32 19.5 TFLOPS
Tensor Float 32 156 TFLOPS
GPU Memory Bandwidth 1,935 GB/s

 How many FP32 operations per second
o may also be bounded by memory load/store
« Compute-to-global-memory-access-ratio

o the number of FLOPs performed for each byte access from the
GPU global memory

Memory Access in Matrix Multiplication

BLOCK_WIDTH = 2
Block(0,0) Block(0,1)

\ Thread(0,1) /

» Grid
o four thread blocks (2x2)
o each block with 4 threads (2x2)

* Assuming every thread is
responsible for calculating one
element of result matrix P.

dim3 dimBlock(2, 2);
dim3 dimGrid(2, 2);

Thread(0,0)

Thread(1,0)
Thread(1,1)

Block(1,0) Block(1,1)

Example: simple matrix multiplication

__global__ void MatMulKernel(float *a, float *b, float *c, int N) {
// Compute each thread's global row and col index -> output: (i, j)
int row = blockldx.y * blockDim.y + threadldx.y;
int col = blockldx.x * blockDim.x + threadldx.x;

if (row >=N || col >=N) return;
float Pvalue = 0.0; 1 FP32 multiply
for (intk =0; k < N; k++) { 1 FP32 add

Pvalue +=a[row * N + k] * b[k * N + col];
} 2 global memory access

c[row * N + col] = Pvalue; ~— Of FP32 (=4B)

compute-to-global-
Memory-access:
2/1(27*4)=0.25FLOP/B

6

Peak Computation on A100

FP32 19.5 TFLOPS
Tensor Float 32 156 TFLOPS
GPU Memory Bandwidth 1,935 GB/s

* How much computation is based on memory access?
0 1935G * 0.25 FLOP/B = 483.75 GFLOPs
0 483.75GFLOPs = 2.48% of peak FP32 ops
0 483.75GFLOPs = 0.3% of peak Tensor FP32 ops

* Memory-bound program
o computation limited by data transfer rate from memory

Memory Access Efficiency

=1 cycle

=5 cycles

=5 cycles

=500 cycles

Loading vs Computing

Cl[1] = A[1] + B[1];

GPU Instructions:
ld.global.f32 %$fl1, [%rdl]; // Load A[i] 500 cycle
ld.global.f£32 %f2, [%rd2]; // Load B[i] 500 cycle

add.f£32 %£3, %fl, $f2; // Perform fp32 addition

1 cycle
st.global.f32 [%rd3], %f3; // Store result

Loading data takes more time than actual computation!

CUDA Device Memory Model

Device code can: Grid

— R/W per-thread registers
— R/W per-thread local memory Blocke0) precs
— R/W per-block shared memory
— R/W per-grid global memory

— Read only per-grid constant
memory

Host code can

— Transfer data to/from per grid |, ¢
global and constant memories

Access Device Memory

Variable declaration Memory Scope Lifetime

int var; Register Thread Grid

int varArr[N]; Local Thread Gnid

__device shared int Sharedvar; Shared Block Grid
__device int GlobalVar; Global Grid Application
__device constant _ int constVar; Constant Grid Application

11

Opportunity to speedup: Reuse loaded data

C=AXB " B

threads in the thread block may
use the same data

12

Opportunity to speedup: Reuse loaded data

C=AXB ¢ B

threads in the thread block may
use the same data

13

Tiling for Matrix Multiplication

C =AXB

Z

N

Step 1 (simultaneously)

load the first tile of each input matrix
to shared memory

each thread in the thread block loads
one element

wait for loading __syncthreads()

14

Tiling for Matrix Multiplication

C =AXB

Z

Btitle

N

Atile

Step 2

each thread in the thread block
computes the partial sum from the
tiles in shared memory, threads wait
for each other to finish

__syncthreads()

15

Tiling for Matrix Multiplication

C =AXB

Z

N

Step 3 (simultaneously)

load the next tile of each input matrix
to shared memory

each thread in the thread block loads
one element

16

Tiling for Matrix Multiplication

Biie N
Step 4
C=AX%XB * g €ach thread in the thread block
updates the partial sum from the tiles
in shared memory, threads wait for
T x each other to finish
Asile

17

Tiling for Matrix Multiplication

Step 5,06, 7,8 ...

C=AXPB g continue for next tiles

18

Outline: GPU Acceleration techniques
 Tiling (Chap 5)
—>* Memory parallelism (Chap 5 & 6)

« Sparse Matrix Multiplication

 CUBLAS

19

Memory Restriction

GPU NVIDIA H100 NVIDIA A100

FP32 67 teraFLOPS 19.5 teraFLOPS

Memory 80GB HBM3 80GB HBM2e

Memory Bandwidth 3.35TB/s 2TB/s

SMs 132 104

Shared memory per SM 256K 192K

Registers per SM 64K 64K]

20

Memory Restriction

If 1024 threads, 16384 registers

Grid

« Each thread can use only 16384/1024 = 16

Block (0, 0) Block (0, 1) registers

Each block can use up to 192 KB of shared
memory

Tiled memory (e.q.):

* As:32x32x4=4KB

* Bs:32x32x4 =4KB

Locality / Bursts Organization

* access 32-byte each time

« Consecutive memory accesses
IN a warp are coalesced
together.

* Row-major format to store

RI M0 My 4 My Mgz My My 4 My o My 3 M3 Mg 4 M35 Mg 3

multidimensional array in C and
CUDA

Linearized order in increasing address

* allows DRAM burst, faster than
Individual access 2

Coalesced Memory Access (fast)

Addresses requested by the
threads in the warp

...l
[S N Y E

0 128 160 192 224 256 384 512

one memory load to serve multiple threads in a warp

23

Uncoalesced Memory Acess (slow)

Addre q sted by the
th d n the warp

BRENEEE
S S S S S E—

0 128 160 192 224 256 384 512

32 bytes apart, need two loads for two threads!

24

A W PO — O

Matrix Transpose Example

4 N O 1 2 3

4

A W NN — O

Naive Implementation of Matrix Transpose

/* macro to index a 1D memory array with 2D indices in row-major order */
/* Id is the leading dimension, i.e. the number of columns in the matrix */
#tdefine INDX(row, col, Id) (((row) * (Id)) + (col))

() {

}/* endif */

}

26

blockldx.x

blockldx.y

F

how many rows before?
blockDim.y * blockldx.y + threadldx.y

how m columns before?
blockDim. X blockldx.x + threadldx.x

0s In origal
| * #cols + 1 |

N\
threadldx.x, threadldx.y

\gos in transposéd array?
| * #cols + [

27

Is memory access coalesced?

/* macro to index a 1D memory array with 2D indices in row-major order */
/* Id is the leading dimension, i.e. the number of columns in the matrix */
#tdefine INDX(row, col, Id) (((row) * (Id)) + (col))

() {

}/* endif */

}

28

Key idea to improve memory efficiency: Use
. Shared memory

blocklo

blockldx.y

N/i\sshared mem
F C//ﬁ

N\
threadldx.x, threadldx.y

29

Matrix Transpose (coalesced)

__global _ void smem_cuda_transpose(int m, float *a, float *c) {
__shared__ float smemArray[THREADS PER BLOCK_ X][THREADS PER_BLOCK Y];

const int tileCol = blockDim.x * blockldx.x;
const int tileRow = blockDim.y * blockldx.y;

smemArray[threadldx.x][threadldx.y] = a[INDX(tileRow + threadldx.y, tileCol + threadldx.x, m)];
__syncthreads();

c[INDX(tileCol + threadldx.y, tileRow + threadldx.x, m)] = smemArray[threadldx.y][threadldx.x];
return;

}

30

Shared Memory Bank Conflict

Shared memory has 32 banks, each bank stores 4 bytes (32 bits),
access to same bank’s different element will be sequential

Warp index Warp index

B W = [

smemArray[threadldx.x][threadldx.y]
Bank Conflict. slower smemArray[threadldx.y][threadldx.x]

No Bank Conflict, faster

31

}

Matrix Transpose (coalesced)

global void smem_cuda_transpose(int m, float *a, float *c) {
__shared__ float smemArray[THREADS PER BLOCK_ X][THREADS PER_BLOCK Y];

const int tileCol = blockDim.x * blockldx.x;
const int tileRow = blockDim.y * blockldx.y;

smemArray[threadldx.x][threadldx.y] = a[INDX(tileRow + threadldx.y, tileCol + threadldx.x, m)];

__syncthreads(); bank COHﬂlCt

c[INDX(tileCol + threadldx.y, tileRow + threadldx.x, m)] = smemArray[threadldx.y][threadldx.x];
return;

no bank conflict

32

Matrix Transpose (coalesced, no bank conflict)

__global _ void smem_cuda_transpose(int m, float *a, float *c) {

__shared__ float smemArray[THREADS PER BLOCK_ X][THREADS PER_BLOCK Y+1];
const int tileCol = blockDim.x * blockldx.x;

const int tileRow = blockDim.y * blockldx.y;

smemArray[threadldx.x][threadldx.y] = a[INDX(tileRow + threadldx.y, tileCol + threadldx.x, m)];
| no bank conflict
__syncthreads();

c[INDX(tileCol + threadldx.y, tileRow + threadldx.x, m)] = smemArray[threadldx.y][threadldx.x];
return;

} no bank conflict

33

New Bank Structure

Warp index Warp index

-

RRE

smemArray[threadldx.x][threadldx.y]

smemArray[threadldx.y][threadldx.x]

No Bank Conflict, faster

34

Live Coding Session: Tiled Matrix
Multiplication

* Implement a kernel for tiled matrix multiplication

https://github.com/limsystem/limsys code examples/blob/mal

n/cuda acceleration demo/matmul tile.cu

35

https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu
https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu

Tiled Matrix Multiplication

__global__ void MatMulTiledKernel(float* d_A, float* d_B, float* d_C, int N) {
__shared__ float As[TILE_ WIDTH][TILE_ WIDTH];
__Shared__ float BS[TILE_ WIDTH][TILE_WIDTH];

// Determine the row and col of the P element to be calculated for the thread
int row = blockldx.y * blockDim.y + threadldx.y;
int col = blockldx.x * blockDim.x + threadldx.x;
float Cvalue = 0;
for(int ph = 0; ph < N/TILE_WIDTH; ++ph) {
As[threadldx.y][threadldx.x] = d_A[row * N + ph * TILE_ WIDTH + threadldx.x];
Bs[threadldx.y][threadldx.x] = d_B[(ph * TILE_WIDTH + threadldx.y) * N + col];
__syncthreads();
for(int k =0; k < TILE_WIDTH; ++k) {
Cvalue += As[threadldx.y][k] * Bs[k][threadldx.x];
}
__syncthreads();

}

d_C[row * N + col] = Cvalue;

36

Outline: GPU Acceleration techniques
* Tiling (Chap 5)
 Memory parallelism (Chap 5 & 0)

—>e Sparse Matrix Multiplication

 CUBLAS

40

Sparse Matrix - CSR

Sparse matrix
Compressed Sparse Row (CSR)

0 1
0 . j.. Row pointers . .. 7
1
Column offsets
 EL R Bl
: e oo [alle[e] e felflle

Sparse Matrix-Vector Multiplication

EEE "

for(int row = 0; row < n; row++) {
float dot = 0;
int row_start = row_ptr[row];
int row_end =row_ptr[row + 1];
for(int el = row_start; el < row_end; el++)

A {
dot += x[col_index[el]] * data[el];
}
y[row] += dot;

row_ptr 0 2 2 3 Vi

data 3 | 2 4 | | 1

col_index 0 2 | 2 3 0 3

Sparse Matrix-Vector Multiplication

__global__ void SpMVCSRKernel(float *data, int *col_index, int *row_ptr, float *x, float *y, int
num_rows) {
int row = blockldx.x * blockDim.x + threadldx.x;
if(row < num_rows) {
float dot = 0;
int row_start = row_ptr[row];
int row_end =row_ptr[row + 1];
for(int elem =row_start; elem < row_end; elem++) {
dot += x[col_index[elem]] * data[elem];

}

y[row] += dot;

43

Outline: GPU Acceleration techniques
* Tiling (Chap 5)
 Memory parallelism (Chap 5 & 0)

« Sparse Matrix Multiplication

—> e+ CUuBLAS

44

CUBLAS

« CUDA Basic Linear Algebra Subroutine library

* a lightweight library dedicated to GEneral Matrix-to-matrix
Multiply (GEMM) operations

45

cuBLAS APIs

» must call before:
cublasStatus_t cublasCreate(cublasHandle_t *handle)

* must call after:
cublasStatus_t cublasDestroy(cublasHandle_t handle)

* float vector dot product

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,

const float *x, int incx,
const float *y, int incy,
float *result)

46

cuBLAS APIs

» Matrix vector product y = aAd - x + Sy
cublasStatus_t cublasSgemv(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const float *alpha,
const float *A, int Ida,
const float *x, int Incx,
const float "beta,
float *y, int incy)

47

cuBLAS APIs

* Matrix matrix multiplication: C=aA - B + C
cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int k, const float *alpha,
const float *A, int Ida,
const float *B, int Idb,
const float "beta,
float *C, int Idc)

48

Summary of GPU Acceleration
Tiling for efficient matrix computation
Coalesced memory access

Sparse matrix representation and multiplication

CUBLAS
o readily available vector, matrix-vector, matrix-matrix operations

49

Quiz

» https://canvas.cmu.edu/courses/51352/quizzes/155251

50

https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251

	Slide 1: GPU Acceleration
	Slide 2
	Slide 3: Outline: GPU Acceleration techniques
	Slide 4: Memory Access Efficiency is Critical
	Slide 5: Memory Access in Matrix Multiplication
	Slide 6: Example: simple matrix multiplication
	Slide 7: Peak Computation on A100
	Slide 8: Memory Access Efficiency
	Slide 9: Loading vs Computing
	Slide 10: CUDA Device Memory Model
	Slide 11: Access Device Memory
	Slide 12: Opportunity to speedup: Reuse loaded data
	Slide 13: Opportunity to speedup: Reuse loaded data
	Slide 14: Tiling for Matrix Multiplication
	Slide 15: Tiling for Matrix Multiplication
	Slide 16: Tiling for Matrix Multiplication
	Slide 17: Tiling for Matrix Multiplication
	Slide 18: Tiling for Matrix Multiplication
	Slide 19: Outline: GPU Acceleration techniques
	Slide 20: Memory Restriction
	Slide 21: Memory Restriction
	Slide 22: Locality / Bursts Organization
	Slide 23: Coalesced Memory Access (fast)
	Slide 24: Uncoalesced Memory Acess (slow)
	Slide 25: Matrix Transpose Example
	Slide 26: Naïve Implementation of Matrix Transpose
	Slide 27
	Slide 28: Is memory access coalesced?
	Slide 29: Key idea to improve memory efficiency: Use Shared memory
	Slide 30: Matrix Transpose (coalesced)
	Slide 31: Shared Memory Bank Conflict
	Slide 32: Matrix Transpose (coalesced)
	Slide 33: Matrix Transpose (coalesced, no bank conflict)
	Slide 34: New Bank Structure
	Slide 35: Live Coding Session: Tiled Matrix Multiplication
	Slide 36: Tiled Matrix Multiplication
	Slide 40: Outline: GPU Acceleration techniques
	Slide 41: Sparse Matrix - CSR
	Slide 42: Sparse Matrix-Vector Multiplication
	Slide 43: Sparse Matrix-Vector Multiplication
	Slide 44: Outline: GPU Acceleration techniques
	Slide 45: cuBLAS
	Slide 46: cuBLAS APIs
	Slide 47: cuBLAS APIs
	Slide 48: cuBLAS APIs
	Slide 49: Summary of GPU Acceleration
	Slide 50: Quiz

