
GPU Acceleration

Lei Li

2

Programming Massively Parallel Processors (4th ed)

https://learning.oreilly.com/library/view/programming-

massively-

parallel/9780323984638/?sso_link=yes&sso_link_from

=cmu-edu

CUDA Programming Guide (from Nvidia)

https://docs.nvidia.com/cuda/cuda-programming-guide

• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS

3

Outline: GPU Acceleration techniques

A100 80G PCIe

FP32 19.5 TFLOPS

Tensor Float 32 156 TFLOPS

GPU Memory Bandwidth 1,935 GB/s

4

Memory Access Efficiency is Critical

• How many FP32 operations per second
o may also be bounded by memory load/store

• Compute-to-global-memory-access-ratio
o the number of FLOPs performed for each byte access from the

GPU global memory

• Grid

o four thread blocks (2x2)

o each block with 4 threads (2x2)

• Assuming every thread is

responsible for calculating one

element of result matrix P.

dim3 dimBlock(2, 2);
dim3 dimGrid(2, 2);

5

Memory Access in Matrix Multiplication

__global__ void MatMulKernel(float *a, float *b, float *c, int N) {
 // Compute each thread's global row and col index -> output: (i, j)
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;

 if (row >= N || col >= N) return;
 float Pvalue = 0.0;
 for (int k = 0; k < N; k++) {
 Pvalue += a[row * N + k] * b[k * N + col];
 }
 c[row * N + col] = Pvalue;
}

6

Example: simple matrix multiplication

1 FP32 multiply

1 FP32 add

2 global memory access

of FP32 (=4B)

compute-to-global-

memory-access:

2 / (2 * 4) = 0.25 FLOP/B

• How much computation is based on memory access?

o 1935G * 0.25 FLOP/B = 483.75 GFLOPs

o 483.75GFLOPs = 2.48% of peak FP32 ops

o 483.75GFLOPs = 0.3% of peak Tensor FP32 ops

• Memory-bound program

o computation limited by data transfer rate from memory 7

Peak Computation on A100

A100 80G PCIe

FP32 19.5 TFLOPS

Tensor Float 32 156 TFLOPS

GPU Memory Bandwidth 1,935 GB/s

8

Memory Access Efficiency

…

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

L2 Cache

Global Memory

Registers

Shared

Memory
L1 Cache

Constant Cache

Registers

Shared

Memory
L1 Cache

Constant Cache

Registers

Shared

Memory
L1 Cache

Constant Cache

≈1 cycle

≈5 cycles

≈5 cycles

≈500 cycles

C[i] = A[i] + B[i];

GPU Instructions:
 ld.global.f32 %f1, [%rd1]; // Load A[i]

 ld.global.f32 %f2, [%rd2]; // Load B[i]

 add.f32 %f3, %f1, %f2; // Perform fp32 addition

 st.global.f32 [%rd3], %f3; // Store result

9

Loading vs Computing

500 cycle

500 cycle

1 cycle

Loading data takes more time than actual computation!

10

CUDA Device Memory Model

Variable declaration Memory Scope Lifetime

int var; Register Thread Grid

int varArr[N]; Local Thread Grid

__device__ __shared__ int SharedVar; Shared Block Grid

__device__ int GlobalVar; Global Grid Application

__device__ __constant__ int constVar; Constant Grid Application

11

Access Device Memory

Opportunity to speedup: Reuse loaded data

12

N

N

𝐶 = 𝐴 × 𝐵

A

B

C

N

N

N

N

threads in the thread block may

use the same data

Opportunity to speedup: Reuse loaded data

13

N

N

𝐶 = 𝐴 × 𝐵

A

B

C

N

N

N

N

threads in the thread block may

use the same data

Step 1 (simultaneously)

load the first tile of each input matrix

to shared memory

each thread in the thread block loads

one element

wait for loading __syncthreads()

14

Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵

A

B

C

N

N

N

N

Step 2

each thread in the thread block

computes the partial sum from the

tiles in shared memory, threads wait

for each other to finish

__syncthreads()

15

Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵

Atile

Btitle

C

N

N

N

N

Step 3 (simultaneously)

load the next tile of each input matrix

to shared memory

each thread in the thread block loads

one element

16

Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵

A

B

C

N

N

N

N

Step 4

each thread in the thread block

updates the partial sum from the tiles

in shared memory, threads wait for

each other to finish

17

Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵 B

C

N

N

N

N

Btitle

Atile

Step 5, 6, 7, 8 …

continue for next tiles

18

Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵

A

B

C

N

N

N

N

• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS

19

Outline: GPU Acceleration techniques

GPU NVIDIA H100 NVIDIA A100

FP32 67 teraFLOPS 19.5 teraFLOPS

Memory 80GB HBM3 80GB HBM2e

Memory Bandwidth 3.35TB/s 2TB/s

SMs 132 104

Shared memory per SM 256K 192K

Registers per SM 64K 64K

20

Memory Restriction

21

Memory Restriction
If 1024 threads, 16384 registers

• Each thread can use only 16384/1024 = 16

registers

Each block can use up to 192 KB of shared

memory

Tiled memory (e.g.):

• As: 32 x 32 x 4 = 4KB

• Bs: 32 x 32 x 4 = 4KB

22

Locality / Bursts Organization
• access 32-byte each time

• Consecutive memory accesses

in a warp are coalesced

together.

• Row-major format to store

multidimensional array in C and

CUDA

• allows DRAM burst, faster than

individual access

23

Coalesced Memory Access (fast)

one memory load to serve multiple threads in a warp

Uncoalesced Memory Acess (slow)

24

32 bytes apart, need two loads for two threads!

25

Matrix Transpose Example

/* macro to index a 1D memory array with 2D indices in row-major order */
/* ld is the leading dimension, i.e. the number of columns in the matrix */
#define INDX(row, col, ld) (((row) * (ld)) + (col)) __global__ void
naive_cuda_transpose(int m, float *a, float *c) {
 int myCol = blockDim.x * blockIdx.x + threadIdx.x;
 int myRow = blockDim.y * blockIdx.y + threadIdx.y;
 if(myRow < m && myCol < m) {
 c[INDX(myCol, myRow, m)] = a[INDX(myRow, myCol, m)];
 } /* end if */
 return;
}

26

Naïve Implementation of Matrix Transpose

27

blockIdx.x

blockIdx.y

threadIdx.x, threadIdx.y

how many rows before?

blockDim.y * blockIdx.y + threadIdx.y

how many columns before?

blockDim.x * blockIdx.x + threadIdx.x

pos in original data array?

[] * #cols + []

pos in transposed array?

[] * #cols + []

Is memory access coalesced?

28

/* macro to index a 1D memory array with 2D indices in row-major order */
/* ld is the leading dimension, i.e. the number of columns in the matrix */
#define INDX(row, col, ld) (((row) * (ld)) + (col)) __global__ void
naive_cuda_transpose(int m, float *a, float *c) {
 int myCol = blockDim.x * blockIdx.x + threadIdx.x;
 int myRow = blockDim.y * blockIdx.y + threadIdx.y;
 if(myRow < m && myCol < m) {
 c[INDX(myCol, myRow, m)] = a[INDX(myRow, myCol, m)];
 } /* end if */
 return;
}

Key idea to improve memory efficiency: Use

Shared memory

29

blockIdx.x

blockIdx.y

threadIdx.x, threadIdx.y

shared mem

__global__ void smem_cuda_transpose(int m, float *a, float *c) {
 __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y];
 const int tileCol = blockDim.x * blockIdx.x;
 const int tileRow = blockDim.y * blockIdx.y;

 smemArray[threadIdx.x][threadIdx.y] = a[INDX(tileRow + threadIdx.y, tileCol + threadIdx.x, m)];

 __syncthreads();

 c[INDX(tileCol + threadIdx.y, tileRow + threadIdx.x, m)] = smemArray[threadIdx.y][threadIdx.x];
 return;
}

30

Matrix Transpose (coalesced)

31

Shared Memory Bank Conflict

Bank Conflict, slower
No Bank Conflict, faster

Shared memory has 32 banks, each bank stores 4 bytes (32 bits),

access to same bank’s different element will be sequential

smemArray[threadIdx.y][threadIdx.x]
smemArray[threadIdx.x][threadIdx.y]

__global__ void smem_cuda_transpose(int m, float *a, float *c) {
 __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y];
 const int tileCol = blockDim.x * blockIdx.x;
 const int tileRow = blockDim.y * blockIdx.y;

 smemArray[threadIdx.x][threadIdx.y] = a[INDX(tileRow + threadIdx.y, tileCol + threadIdx.x, m)];

 __syncthreads();

 c[INDX(tileCol + threadIdx.y, tileRow + threadIdx.x, m)] = smemArray[threadIdx.y][threadIdx.x];
 return;
}

32

Matrix Transpose (coalesced)

bank conflict

no bank conflict

__global__ void smem_cuda_transpose(int m, float *a, float *c) {
 __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y+1];
 const int tileCol = blockDim.x * blockIdx.x;
 const int tileRow = blockDim.y * blockIdx.y;

 smemArray[threadIdx.x][threadIdx.y] = a[INDX(tileRow + threadIdx.y, tileCol + threadIdx.x, m)];

 __syncthreads();

 c[INDX(tileCol + threadIdx.y, tileRow + threadIdx.x, m)] = smemArray[threadIdx.y][threadIdx.x];
 return;
}

33

Matrix Transpose (coalesced, no bank conflict)

no bank conflict

no bank conflict

34

New Bank Structure

No Bank Conflict, faster
smemArray[threadIdx.y][threadIdx.x]

smemArray[threadIdx.x][threadIdx.y]

• Implement a kernel for tiled matrix multiplication

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/cuda_acceleration_demo/matmul_tile.cu

35

Live Coding Session: Tiled Matrix

Multiplication

https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu
https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu

#define TILE_WIDTH 2
__global__ void MatMulTiledKernel(float* d_A, float* d_B, float* d_C, int N) {
 __shared__ float As[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Bs[TILE_WIDTH][TILE_WIDTH];

 // Determine the row and col of the P element to be calculated for the thread
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float Cvalue = 0;
 for(int ph = 0; ph < N/TILE_WIDTH; ++ph) {
 As[threadIdx.y][threadIdx.x] = d_A[row * N + ph * TILE_WIDTH + threadIdx.x];
 Bs[threadIdx.y][threadIdx.x] = d_B[(ph * TILE_WIDTH + threadIdx.y) * N + col];
 __syncthreads();
 for(int k = 0; k < TILE_WIDTH; ++k) {
 Cvalue += As[threadIdx.y][k] * Bs[k][threadIdx.x];
 }
 __syncthreads();
 }
 d_C[row * N + col] = Cvalue;
}

36

Tiled Matrix Multiplication

• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS

40

Outline: GPU Acceleration techniques

41

Sparse Matrix - CSR

for(int row = 0; row < n; row++) {
 float dot = 0;
 int row_start = row_ptr[row];
 int row_end = row_ptr[row + 1];
 for(int el = row_start; el < row_end; el++)
 {
 dot += x[col_index[el]] * data[el];
 }
 y[row] += dot;
}

42

Sparse Matrix-Vector Multiplication

__global__ void SpMVCSRKernel(float *data, int *col_index, int *row_ptr, float *x, float *y, int
num_rows) {

 int row = blockIdx.x * blockDim.x + threadIdx.x;

 if(row < num_rows) {

 float dot = 0;

 int row_start = row_ptr[row];

 int row_end = row_ptr[row + 1];

 for(int elem = row_start; elem < row_end; elem++) {

 dot += x[col_index[elem]] * data[elem];

 }

 y[row] += dot;

 }

}

43

Sparse Matrix-Vector Multiplication

• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS

44

Outline: GPU Acceleration techniques

• CUDA Basic Linear Algebra Subroutine library

• a lightweight library dedicated to GEneral Matrix-to-matrix

Multiply (GEMM) operations

45

cuBLAS

• must call before:

cublasStatus_t cublasCreate(cublasHandle_t *handle)

• must call after:

cublasStatus_t cublasDestroy(cublasHandle_t handle)

• float vector dot product

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,

 const float *x, int incx,

 const float *y, int incy,

 float *result) 46

cuBLAS APIs

• Matrix vector product 𝑦 = 𝛼𝐴 ∙ 𝑥 + 𝛽𝑦

cublasStatus_t cublasSgemv(cublasHandle_t handle,

 cublasOperation_t trans,

 int m, int n,

 const float *alpha,

 const float *A, int lda,

 const float *x, int incx,

 const float *beta,

 float *y, int incy)

47

cuBLAS APIs

• Matrix matrix multiplication: C = 𝛼𝐴 ∙ 𝐵 + 𝛽𝐶

cublasStatus_t cublasSgemm(cublasHandle_t handle,

 cublasOperation_t transa,

 cublasOperation_t transb,

 int m, int n, int k, const float *alpha,

 const float *A, int lda,

 const float *B, int ldb,

 const float *beta,

 float *C, int ldc)

48

cuBLAS APIs

• Tiling for efficient matrix computation

• Coalesced memory access

• Sparse matrix representation and multiplication

• cuBLAS

o readily available vector, matrix-vector, matrix-matrix operations

49

Summary of GPU Acceleration

• https://canvas.cmu.edu/courses/51352/quizzes/155251

50

Quiz

https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251

	Slide 1: GPU Acceleration
	Slide 2
	Slide 3: Outline: GPU Acceleration techniques
	Slide 4: Memory Access Efficiency is Critical
	Slide 5: Memory Access in Matrix Multiplication
	Slide 6: Example: simple matrix multiplication
	Slide 7: Peak Computation on A100
	Slide 8: Memory Access Efficiency
	Slide 9: Loading vs Computing
	Slide 10: CUDA Device Memory Model
	Slide 11: Access Device Memory
	Slide 12: Opportunity to speedup: Reuse loaded data
	Slide 13: Opportunity to speedup: Reuse loaded data
	Slide 14: Tiling for Matrix Multiplication
	Slide 15: Tiling for Matrix Multiplication
	Slide 16: Tiling for Matrix Multiplication
	Slide 17: Tiling for Matrix Multiplication
	Slide 18: Tiling for Matrix Multiplication
	Slide 19: Outline: GPU Acceleration techniques
	Slide 20: Memory Restriction
	Slide 21: Memory Restriction
	Slide 22: Locality / Bursts Organization
	Slide 23: Coalesced Memory Access (fast)
	Slide 24: Uncoalesced Memory Acess (slow)
	Slide 25: Matrix Transpose Example
	Slide 26: Naïve Implementation of Matrix Transpose
	Slide 27
	Slide 28: Is memory access coalesced?
	Slide 29: Key idea to improve memory efficiency: Use Shared memory
	Slide 30: Matrix Transpose (coalesced)
	Slide 31: Shared Memory Bank Conflict
	Slide 32: Matrix Transpose (coalesced)
	Slide 33: Matrix Transpose (coalesced, no bank conflict)
	Slide 34: New Bank Structure
	Slide 35: Live Coding Session: Tiled Matrix Multiplication
	Slide 36: Tiled Matrix Multiplication
	Slide 40: Outline: GPU Acceleration techniques
	Slide 41: Sparse Matrix - CSR
	Slide 42: Sparse Matrix-Vector Multiplication
	Slide 43: Sparse Matrix-Vector Multiplication
	Slide 44: Outline: GPU Acceleration techniques
	Slide 45: cuBLAS
	Slide 46: cuBLAS APIs
	Slide 47: cuBLAS APIs
	Slide 48: cuBLAS APIs
	Slide 49: Summary of GPU Acceleration
	Slide 50: Quiz

