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Programming Massively Parallel Processors (4th ed)

https://learning.oreilly.com/library/view/programming-

massively-

parallel/9780323984638/?sso_link=yes&sso_link_from

=cmu-edu

CUDA Programming Guide (from Nvidia)

https://docs.nvidia.com/cuda/cuda-programming-guide



• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS
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Outline: GPU Acceleration techniques



A100 80G PCIe

FP32 19.5 TFLOPS

Tensor Float 32 156 TFLOPS

GPU Memory Bandwidth 1,935 GB/s
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Memory Access Efficiency is Critical

• How many FP32 operations per second
o may also be bounded by memory load/store

• Compute-to-global-memory-access-ratio
o the number of FLOPs performed for each byte access from the 

GPU global memory



• Grid

o four thread blocks (2x2)

o each block with 4 threads (2x2)

• Assuming every thread is 

responsible for calculating one 

element of result matrix P.

dim3 dimBlock(2, 2);
dim3 dimGrid(2, 2);
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Memory Access in Matrix Multiplication



__global__ void MatMulKernel(float *a, float *b, float *c, int N) {
 // Compute each thread's global row and col index -> output: (i, j)
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;

 if (row >= N || col >= N) return;
 float Pvalue = 0.0;
 for (int k = 0; k < N; k++) {
  Pvalue += a[row * N + k] * b[k * N + col];
 }
 c[row * N + col] = Pvalue;
}
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Example: simple matrix multiplication

1 FP32 multiply

1 FP32 add

2 global memory access 

of FP32 (=4B)

compute-to-global-

memory-access: 

2 / (2 * 4) = 0.25 FLOP/B



• How much computation is based on memory access?

o 1935G * 0.25 FLOP/B = 483.75 GFLOPs

o 483.75GFLOPs = 2.48% of peak FP32 ops

o 483.75GFLOPs = 0.3% of peak Tensor FP32 ops

• Memory-bound program 

o computation limited by data transfer rate from memory 7

Peak Computation on A100

A100 80G PCIe

FP32 19.5 TFLOPS

Tensor Float 32 156 TFLOPS

GPU Memory Bandwidth 1,935 GB/s
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Memory Access Efficiency
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C[i] = A[i] + B[i];

GPU Instructions:
  ld.global.f32 %f1, [%rd1]; // Load A[i] 

  ld.global.f32 %f2, [%rd2]; // Load B[i] 

  

  add.f32 %f3, %f1, %f2; // Perform fp32 addition 

  

  st.global.f32 [%rd3], %f3; // Store result

9

Loading vs Computing

500 cycle

500 cycle

1 cycle

Loading data takes more time than actual computation!
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CUDA Device Memory Model



Variable declaration Memory Scope Lifetime

int var;    Register Thread Grid

int varArr[N]; Local Thread Grid

__device__ __shared__  int SharedVar; Shared Block Grid

__device__             int GlobalVar; Global Grid Application

__device__ __constant__ int constVar; Constant Grid Application
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Access Device Memory



Opportunity to speedup: Reuse loaded data
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Opportunity to speedup: Reuse loaded data
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Step 1 (simultaneously)

load the first tile of each input matrix 

to shared memory

each thread in the thread block loads 

one element

wait for loading __syncthreads()
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Tiling for Matrix Multiplication
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Step 2 

each thread in the thread block 

computes the partial sum from the 

tiles in shared memory, threads wait 

for each other to finish

__syncthreads()
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Tiling for Matrix Multiplication
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Step 3 (simultaneously)

load the next tile of each input matrix 

to shared memory

each thread in the thread block loads 

one element
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Tiling for Matrix Multiplication
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Step 4 

each thread in the thread block 

updates the partial sum from the tiles 

in shared memory, threads wait for 

each other to finish
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Tiling for Matrix Multiplication

N

N

𝐶 = 𝐴 × 𝐵 B

C

N

N

N

N

Btitle

Atile



Step 5, 6, 7, 8 …

continue for next tiles
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Tiling for Matrix Multiplication
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• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS
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Outline: GPU Acceleration techniques



GPU NVIDIA H100 NVIDIA A100

FP32 67 teraFLOPS 19.5 teraFLOPS

Memory 80GB HBM3 80GB HBM2e

Memory Bandwidth 3.35TB/s 2TB/s

SMs 132 104

Shared memory per SM 256K 192K

Registers per SM 64K 64K
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Memory Restriction
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Memory Restriction
If 1024 threads, 16384 registers

• Each thread can use only 16384/1024 = 16 

registers

Each block can use up to 192 KB of shared 

memory

Tiled memory (e.g.):

• As: 32 x 32 x 4 = 4KB

• Bs: 32 x 32 x 4 = 4KB
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Locality / Bursts Organization
• access 32-byte each time

• Consecutive memory accesses 

in a warp are coalesced 

together. 

• Row-major format to store 

multidimensional array in C and 

CUDA

• allows DRAM burst, faster than 

individual access
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Coalesced Memory Access (fast)

one memory load to serve multiple threads in a warp



Uncoalesced Memory Acess (slow)
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32 bytes apart, need two loads for two threads!
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Matrix Transpose Example



/* macro to index a 1D memory array with 2D indices in row-major order */ 
/* ld is the leading dimension, i.e. the number of columns in the matrix */ 
#define INDX( row, col, ld ) ( ( (row) * (ld) ) + (col) ) __global__ void 
naive_cuda_transpose(int m, float *a, float *c ) { 
  int myCol = blockDim.x * blockIdx.x + threadIdx.x; 
  int myRow = blockDim.y * blockIdx.y + threadIdx.y; 
  if( myRow < m && myCol < m ) { 
    c[INDX( myCol, myRow, m )] = a[INDX( myRow, myCol, m )]; 
  } /* end if */ 
  return; 
}
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Naïve Implementation of Matrix Transpose



27

blockIdx.x

blockIdx.y

threadIdx.x, threadIdx.y

how many rows before? 

blockDim.y * blockIdx.y + threadIdx.y

how many columns before?

blockDim.x * blockIdx.x + threadIdx.x

pos in original data array?

[ ] * #cols + [ ]

pos in transposed array?

[ ] * #cols + [ ]



Is memory access coalesced? 
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/* macro to index a 1D memory array with 2D indices in row-major order */ 
/* ld is the leading dimension, i.e. the number of columns in the matrix */ 
#define INDX( row, col, ld ) ( ( (row) * (ld) ) + (col) ) __global__ void 
naive_cuda_transpose(int m, float *a, float *c ) { 
  int myCol = blockDim.x * blockIdx.x + threadIdx.x; 
  int myRow = blockDim.y * blockIdx.y + threadIdx.y; 
  if( myRow < m && myCol < m ) { 
    c[INDX( myCol, myRow, m )] = a[INDX( myRow, myCol, m )]; 
  } /* end if */ 
  return; 
}



Key idea to improve memory efficiency: Use 

Shared memory
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blockIdx.x

blockIdx.y

threadIdx.x, threadIdx.y

shared mem



__global__ void smem_cuda_transpose(int m, float *a, float *c ) {  
  __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y]; 
  const int tileCol = blockDim.x * blockIdx.x; 
  const int tileRow = blockDim.y * blockIdx.y;

  smemArray[threadIdx.x][threadIdx.y] = a[INDX( tileRow + threadIdx.y, tileCol + threadIdx.x, m )];
 
  __syncthreads(); 

  c[INDX( tileCol + threadIdx.y, tileRow + threadIdx.x, m )] = smemArray[threadIdx.y][threadIdx.x]; 
  return; 
}
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Matrix Transpose (coalesced)
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Shared Memory Bank Conflict

Bank Conflict, slower
No Bank Conflict, faster

Shared memory has 32 banks, each bank stores 4 bytes (32 bits), 

access to same bank’s different element will be sequential

smemArray[threadIdx.y][threadIdx.x]
smemArray[threadIdx.x][threadIdx.y] 



__global__ void smem_cuda_transpose(int m, float *a, float *c ) {  
  __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y]; 
  const int tileCol = blockDim.x * blockIdx.x; 
  const int tileRow = blockDim.y * blockIdx.y;

  smemArray[threadIdx.x][threadIdx.y] = a[INDX( tileRow + threadIdx.y, tileCol + threadIdx.x, m )];
 
  __syncthreads(); 

  c[INDX( tileCol + threadIdx.y, tileRow + threadIdx.x, m )] = smemArray[threadIdx.y][threadIdx.x]; 
  return; 
}
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Matrix Transpose (coalesced)

bank conflict

no bank conflict



__global__ void smem_cuda_transpose(int m, float *a, float *c ) {  
  __shared__ float smemArray[THREADS_PER_BLOCK_X][THREADS_PER_BLOCK_Y+1]; 
  const int tileCol = blockDim.x * blockIdx.x; 
  const int tileRow = blockDim.y * blockIdx.y;

  smemArray[threadIdx.x][threadIdx.y] = a[INDX( tileRow + threadIdx.y, tileCol + threadIdx.x, m )];
 
  __syncthreads(); 

  c[INDX( tileCol + threadIdx.y, tileRow + threadIdx.x, m )] = smemArray[threadIdx.y][threadIdx.x]; 
  return; 
}
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Matrix Transpose (coalesced, no bank conflict)

no bank conflict

no bank conflict
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New Bank Structure 

No Bank Conflict, faster
smemArray[threadIdx.y][threadIdx.x]

smemArray[threadIdx.x][threadIdx.y] 



• Implement a kernel for tiled matrix multiplication

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/cuda_acceleration_demo/matmul_tile.cu 
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Live Coding Session: Tiled Matrix 

Multiplication

https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu
https://github.com/llmsystem/llmsys_code_examples/blob/main/cuda_acceleration_demo/matmul_tile.cu


#define TILE_WIDTH 2
__global__ void MatMulTiledKernel(float* d_A, float* d_B, float* d_C, int N) {
 __shared__ float As[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Bs[TILE_WIDTH][TILE_WIDTH];

 // Determine the row and col of the P element to be calculated for the thread
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float Cvalue = 0;
 for(int ph = 0; ph < N/TILE_WIDTH; ++ph) {
  As[threadIdx.y][threadIdx.x] = d_A[row * N + ph * TILE_WIDTH + threadIdx.x];
  Bs[threadIdx.y][threadIdx.x] = d_B[(ph * TILE_WIDTH + threadIdx.y) * N + col];
  __syncthreads();
  for(int k = 0; k < TILE_WIDTH; ++k) {
   Cvalue += As[threadIdx.y][k] * Bs[k][threadIdx.x];
  }
  __syncthreads();
 }
 d_C[row * N + col] = Cvalue;
}
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Tiled Matrix Multiplication



• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS
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Outline: GPU Acceleration techniques
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Sparse Matrix - CSR



for(int row = 0; row < n; row++) {
 float dot = 0;
 int row_start = row_ptr[row];
 int row_end = row_ptr[row + 1];
 for(int el = row_start; el < row_end; el++) 
 {
  dot += x[col_index[el]] * data[el];
 }
 y[row] += dot;
}
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Sparse Matrix-Vector Multiplication



__global__ void SpMVCSRKernel(float *data, int *col_index, int *row_ptr, float *x, float *y, int 
num_rows) {

 int row = blockIdx.x * blockDim.x + threadIdx.x;

 if(row < num_rows) {

  float dot = 0;

  int row_start = row_ptr[row];

  int row_end = row_ptr[row + 1];

  for(int elem = row_start; elem < row_end; elem++) {

   dot += x[col_index[elem]] * data[elem];

  }

  y[row] += dot;

 }

}
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Sparse Matrix-Vector Multiplication



• Tiling (Chap 5)

• Memory parallelism (Chap 5 & 6)

• Sparse Matrix Multiplication

• cuBLAS
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Outline: GPU Acceleration techniques



• CUDA Basic Linear Algebra Subroutine library

• a lightweight library dedicated to GEneral Matrix-to-matrix 

Multiply (GEMM) operations
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cuBLAS



• must call before: 

cublasStatus_t cublasCreate(cublasHandle_t *handle)

• must call after: 

cublasStatus_t cublasDestroy(cublasHandle_t handle)

• float vector dot product

cublasStatus_t cublasSdot (cublasHandle_t handle, int n, 

 const float *x, int incx, 

 const float *y, int incy, 

 float *result) 46

cuBLAS APIs



• Matrix vector product 𝑦 = 𝛼𝐴 ∙ 𝑥 + 𝛽𝑦

cublasStatus_t cublasSgemv(cublasHandle_t handle, 

 cublasOperation_t trans, 

 int m, int n, 

 const float *alpha, 

 const float *A, int lda, 

 const float *x, int incx, 

 const float *beta, 

 float *y, int incy)
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cuBLAS APIs



• Matrix matrix multiplication: C = 𝛼𝐴 ∙ 𝐵 + 𝛽𝐶

cublasStatus_t cublasSgemm(cublasHandle_t handle, 

  cublasOperation_t transa, 

  cublasOperation_t transb, 

  int m, int n, int k, const float *alpha, 

  const float *A, int lda, 

  const float *B, int ldb, 

  const float *beta, 

  float *C, int ldc)
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cuBLAS APIs



• Tiling for efficient matrix computation

• Coalesced memory access

• Sparse matrix representation and multiplication

• cuBLAS

o readily available vector, matrix-vector, matrix-matrix operations
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Summary of GPU Acceleration



• https://canvas.cmu.edu/courses/51352/quizzes/155251 
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Quiz

https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251
https://canvas.cmu.edu/courses/51352/quizzes/155251
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