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Recap

« GPU is composed of

o streaming processing units (SMs)
= each with four partitions of 32 cores
» shared L1 cache

o memory
o L2 cache: share with all SMs

Grid ( GPU
| | ng:sadBI;c; /’Q
* Threads organized in il Sy
o grid of thread blocks -~ w>:| %.--.
o each block is divided into warps =~

running on one SM.




H100 Architecture
132/114 SMs, 800G HBM3
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New in H100, FP8 operations

c Range Precision
» exponent mantissa
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Allocate 1 bit to either
range or precision
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FP8 FP8
matrix | matrix

multiply

accumulate into
FP32 or FP16

bias/act/...

convert

FP32|FP16|BF16|FP8
matrix

Support for multiple accumulator

and output types




Assignment 1

https.//limsystem.qgithub.io/limsystemhomework/assignment 1
/

recommend to use PSC. Other platform is not guaranteed.
Due date: Jan 28, 2026.

Late policy:
https://limsystem.github.io/limsystem2026spring/docs/Logistic
s#late-day-policy


https://llmsystem.github.io/llmsystemhomework/assignment_1/
https://llmsystem.github.io/llmsystemhomework/assignment_1/

Course Project
Reminder: start form your project team (2-3 students)
Submit your team member names by 2/18/2026
project proposal due 2/27/2026
Initial ideas for project (feel free to form your own):

https://limsystem.qithub.io/limsystem2026spring/docs/Project
S



https://llmsystem.github.io/llmsystem2026spring/docs/Projects
https://llmsystem.github.io/llmsystem2026spring/docs/Projects

Outline

=« Basic GPU CUDA operations

o memory management
o creating threads
o defining kernel functions for arithmetics

« Matrix/Tensor Computation on GPU



CUDA Kernel

Each kernel is a function (program) that runs on GPU
Program itself is serial

Can simultaneously run many (10k) threads at the same
time

Using thread index to compute on right portion of data



Grid

Running GPU kernel

Thread| [Thread||Thread

« CPU invokes kernel grid Block || Block || Block
/ / N\
+ Thread blocks in grid distributed /
to SMs
» Execute concurrently \\( \}GPU ) /
o Each SM runs multiple thread SM J SM J SM J
blocks
o Each core runs one thread from ( 0 0
one thread block SM J SM J SM J




CPU-GPU Data Movement
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CUDA Operations

CPU allocates GPU memory: cudaMalloc

CPU copies data to GPU memory (host to device):
cudaMemcpy

CPU launches GPU kernels
CPU copies results from GPU (device to host): cudaMemcpy

Freeing GPU memory cudaFree
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Allocate GPU Memory

cudaError_t cudaMalloc(void** devPtr, size t size)

devPtr- Pointer to allocated device memory
size- Requested allocation size 1n bytes

int *dA;
cudaMalloc(&dA, n * sizeof(int));

float *dB;
cudaMalloc(&dB, n * sizeof(float));

&devPtr ( CPU mem )
306 306
| devPtr:
=Y
GPU memory

The allocated mem is accessible by all threads

1213 14 15 16
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Free GPU memory

* donot forgot!

cudaError_t cudaFree(void *devPtr);

Parameters

devPtr: A device pointer to the memory you want to free.
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GPU memory
« Each thread has private registers (fastest to access)

* Each thread block has shared memory

o Visible to all threads in a block
o __shared

* All threads can access global gpu memory
o Persistent across kernel launches in the same app

RT CORE

| 2nd Generation —

15



Data Movement

Copy data from devices: cpu to gpu, gpu to cpu

cudaError_t cudaMemcpy(void* dst, const void* src,
size_t count, cudaMemcpyKind kind)
Parameters:
dst: Destination memory address
src: Source memory address
count: Size m bytes to copy
kind: Type of transfer, cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost

cudaMemcpy(dGPU, hCpu, n * sizeof(int), cudaMemcpyHostToDevice);
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New in H100: Tensor Memory Accelerator
(TMA)

vold cuda::memcpy async(void* destination, void const™® source,
Shape size, cuda::barrier<Scope, CompletionFunction>& barrier);

barrier.wait()

padding

_ Tensor height

* Tensor
stride

.

base:addr Tensor width
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Asynchronous execution in Hopper GPU

Copy 1o Global

CUDA Programming Model

New for H100
Exposure
Barrier.arrive(), ;A_synchronous Barrier  Asynchronous Transaction Barrier
Barrier.wait() iWaiter spins in SMEM  Waiter sleeps until all threads arrive

Memcpy_async() {Direct copy to SMEM  Asynchronous mem copy unit (called TMA)
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Declaration of Host/Device function

 Both host and device code in same .cu file

* |ndicate where the code will run

keyword call on execute on
__global__ host (cpu) device (gpu)
__device__ device (gpu) device (gpu)

__host__ host host
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Defining Functions to be executed on GPU

Define kernel function, _ global

__global __ void VecAddKernel(int* A, int* B, int* C, int n) {
int i = blockDim.x * blockldx.x + threadldx.x;
if (i<n){
C[i] = Ali] + B[i[;
}
}

int main() {
VecAddKernel<<<1, N>>>(A, B, C, N);
}
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Calling Kernel at Runtime

» Host program specifies grid-block-threads configurations for
kernel at run time

o Dg and Db are either dim3 or int
dim3 Dg(4, 2, 1);
dim3 Db(8, 8, 1);
kernelFuncName<<<Dg, Db>>>(args)

e Dg: size of grid (num. of blocks)
o Dg.x * Dg.y * Dg.z is num. of blocks

e Db: size of block
o Db.x * Db.y * Db.z is num. of threads per block, <=1024)
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Device Runtime Variables

* Host launches kernels on a gpu device

» Each kernel thread needs to know which thread it is running

« Compiler generates build-in variables, with x, vy, z fields

gridDim dim3 dimensions of grid

blockldx uint3 iIndex of block within grid
blockDim dim3 dimensions of block
threadldx uint3 iIndex of thread within block
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Calling CUDA Kernel from CPU

Running kernels on GPU

// n: the size of the vector
int n =1024;

int threads_per_block = 256;

int num_blocks = (n + threads_per _block - 1) /
threads_per_block;

VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);
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CUDA Code Examples for
Matrix Computation



Matrix Multiplication with CUDA

* See notebook example.

 https://github.com/limsystem/limsys code examples/blob/m

ain/simple _cuda demo/CUDA Code Examples.ipynb

* You may upload and run it in Google Colab.
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https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb

__global _ void MatAddKernel(float* A, float™ B, float™ C, int N) {
int i = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
Ci*N+jl=A[i*N+j]+B[i * N+j];

}

int main() {
int N =32;
dim3 threads_per_block(N, N);
int num_blocks = 1;
MatAddKernel<<<num_blocks, threads per block>>>(dA, dB, dC, N);
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int main() {
dim3 threads per block(2, 4, 8);
dim3 blocks per grid(2, 3, 4);
fullkernel<<<blocks per_ grid, threads per block>>>(some_input,
some_output);

24 blocks per grid

04 threads per block

1536 threads in total

can you run this simultaneously on A60007
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__global __ void fullKernel(float™ din, float* dout) {
int block id = blockldx.x + blockldx.y * gridDim.x + blockldx.z *
gridDim.x * gridDim.y;
int block_offset = block_id * blockDim.x *  blockDim.y * blockDim.z;
int thread_offset = threadldx.x
+ threadldx.y * blockDim.x
+ threadldx.z * blockDim.x * blockDim.y;
int tid = block_offset + thread offset;
dout[tid] = func(din[tid]);
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Vector Addition

void VecAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * sizeof(int));
cudaMalloc(&dB, n * sizeof(int));
cudaMalloc(&dC, n * sizeof(int));
cudaMemcpy(dA, Acpu, n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / threads_per_block;
VecAddKernel<<<num_blocks, threads per_block>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);
cudaFree(dB);
cudaFree(dC);
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Matrix Addition

void MatAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {

int *dA, *dB, *dC;

cudaMalloc(&dA, n * n * sizeof(int));

cudaMalloc(&dB, n * n * sizeof(int));

cudaMalloc(&dC, n * n * sizeof(int));

cudaMemcpy(dA, Acpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
int THREADS = 32;

int BLOCKS = (n + THREADS - 1) / THREADS;

dim3 threads(THREADS, THREADS); // should be <= 1024

dim3 blocks(BLOCKS, BLOCKS);

MatAddKernel<<<blocks, threads>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);

cudaFree(dB);

cudaFree(dC);
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Summary

Basic GPU CUDA operations

o memory allocation
o data movement

o creating threads and running on SMs
» specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
» using building index variables to refer to the data
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Recommended Reading

« Chap 2,3,4 of "Programming Massively Parallel Processors,
41 Ed.

https://learning.oreilly.com/library/view/programming-
massively-

parallel/9780323984638/?ss0_link=yes&sso_link_from=cmu
-edu

* Free for CMU students
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