
GPU Programming

Lei Li

• GPU is composed of

o streaming processing units (SMs)
▪ each with four partitions of 32 cores

▪ shared L1 cache

omemory

o L2 cache: share with all SMs

• Threads organized in

o grid of thread blocks

o each block is divided into warps

running on one SM.
2

Recap

Grid GPU

Warp

1

Thread Block

Warp

1

Warp

2

Warp

3
Warp

4

SM

partition1

H100 Architecture

3

132/114 SMs, 80G HBM3

4 partitions per SM, each with 32

cores ➔ 32 threads each

128 cores per SM

64KB register per partition (fastest

to access)

256KB shared L1 cache per SM

4

H100 SM

5

New in H100, FP8 operations

https://llmsystem.github.io/llmsystemhomework/assignment_1

/

recommend to use PSC. Other platform is not guaranteed.

Due date: Jan 28, 2026.

Late policy:

https://llmsystem.github.io/llmsystem2026spring/docs/Logistic

s#late-day-policy

6

Assignment 1

https://llmsystem.github.io/llmsystemhomework/assignment_1/
https://llmsystem.github.io/llmsystemhomework/assignment_1/

Reminder: start form your project team (2-3 students)

Submit your team member names by 2/18/2026

project proposal due 2/27/2026

Initial ideas for project (feel free to form your own):

https://llmsystem.github.io/llmsystem2026spring/docs/Project

s

7

Course Project

https://llmsystem.github.io/llmsystem2026spring/docs/Projects
https://llmsystem.github.io/llmsystem2026spring/docs/Projects

• Basic GPU CUDA operations

omemory management

o creating threads

o defining kernel functions for arithmetics

• Matrix/Tensor Computation on GPU

8

Outline

• Each kernel is a function (program) that runs on GPU

• Program itself is serial

• Can simultaneously run many (10k) threads at the same

time

• Using thread index to compute on right portion of data

9

CUDA Kernel

• CPU invokes kernel grid

• Thread blocks in grid distributed

to SMs

• Execute concurrently

o Each SM runs multiple thread

blocks

o Each core runs one thread from

one thread block

10

Running GPU kernel
Grid

Thread

Block

Thread

Block

Thread

Block

GPU

SM SM SM

SM SM SM

CPU-GPU Data Movement

11

GPU

GPU Memory

SM SM SM

84

CPU

System Memory

PCIe

32 GB/s

768GB/s64~512GB/s

• CPU allocates GPU memory: cudaMalloc

• CPU copies data to GPU memory (host to device):

cudaMemcpy

• CPU launches GPU kernels

• CPU copies results from GPU (device to host): cudaMemcpy

• Freeing GPU memory cudaFree

12

CUDA Operations

Allocate GPU Memory

13

cudaError_t cudaMalloc(void** devPtr, size_t size)
devPtr- Pointer to allocated device memory

size- Requested allocation size in bytes

int *dA;
cudaMalloc(&dA, n * sizeof(int));

float *dB;
cudaMalloc(&dB, n * sizeof(float));

The allocated mem is accessible by all threads

devPtr:

12

GPU memory

CPU mem

12 13 14 15 16

306

&devPtr

306

• donot forgot!

cudaError_t cudaFree(void *devPtr);

Parameters

devPtr: A device pointer to the memory you want to free.

14

Free GPU memory

• Each thread has private registers (fastest to access)

• Each thread block has shared memory

o Visible to all threads in a block

o __shared__

• All threads can access global gpu memory

o Persistent across kernel launches in the same app

15

GPU memory

Data Movement

16

cudaError_t cudaMemcpy(void* dst, const void* src,
size_t count, cudaMemcpyKind kind)
Parameters:

dst: Destination memory address

src: Source memory address

count: Size in bytes to copy

kind: Type of transfer, cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost

cudaMemcpy(dGPU, hCpu, n * sizeof(int), cudaMemcpyHostToDevice);

Copy data from devices: cpu to gpu, gpu to cpu

New in H100: Tensor Memory Accelerator

(TMA)

17

void cuda::memcpy_async(void* destination, void const* source,

Shape size, cuda::barrier<Scope, CompletionFunction>& barrier);

barrier.wait()

Asynchronous execution in Hopper GPU

18

• Both host and device code in same .cu file

• Indicate where the code will run

19

Declaration of Host/Device function

keyword call on execute on

__global__ host (cpu) device (gpu)

__device__ device (gpu) device (gpu)

__host__ host host

Defining Functions to be executed on GPU

20

__global__ void VecAddKernel(int* A, int* B, int* C, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {

C[i] = A[i] + B[i];
}

}

int main() {
 VecAddKernel<<<1, N>>>(A, B, C, N);
}

Define kernel function, __global__

• Host program specifies grid-block-threads configurations for

kernel at run time

o Dg and Db are either dim3 or int
dim3 Dg(4, 2, 1);
dim3 Db(8, 8, 1);
kernelFuncName<<<Dg, Db>>>(args)

• Dg: size of grid (num. of blocks)

o Dg.x * Dg.y * Dg.z is num. of blocks

• Db: size of block

o Db.x * Db.y * Db.z is num. of threads per block, <=1024) 21

Calling Kernel at Runtime

• Host launches kernels on a gpu device

• Each kernel thread needs to know which thread it is running

• Compiler generates build-in variables, with x, y, z fields

22

Device Runtime Variables

gridDim dim3 dimensions of grid

blockIdx uint3 index of block within grid

blockDim dim3 dimensions of block

threadIdx uint3 index of thread within block

Calling CUDA Kernel from CPU

23

// n: the size of the vector
int n = 1024;
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) /
 threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);

Running kernels on GPU

CUDA Code Examples for

Matrix Computation

24

• See notebook example.

• https://github.com/llmsystem/llmsys_code_examples/blob/m

ain/simple_cuda_demo/CUDA_Code_Examples.ipynb

• You may upload and run it in Google Colab.

25

Matrix Multiplication with CUDA

https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb

26

__global__ void MatAddKernel(float* A, float* B, float* C, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
C[i * N + j] = A[i * N + j] + B[i * N + j];

}

int main() {
int N = 32;
dim3 threads_per_block(N, N);
int num_blocks = 1;
MatAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, N);

}

27

int main() {
dim3 threads_per_block(2, 4, 8);
dim3 blocks_per_grid(2, 3, 4);
fullKernel<<<blocks_per_grid, threads_per_block>>>(some_input,
some_output);

}

24 blocks per grid

64 threads per block

1536 threads in total

can you run this simultaneously on A6000?

28

__global__ void fullKernel(float* din, float* dout) {
int block_id = blockIdx.x + blockIdx.y * gridDim.x + blockIdx.z *
gridDim.x * gridDim.y;
int block_offset = block_id * blockDim.x * blockDim.y * blockDim.z;
int thread_offset = threadIdx.x
 + threadIdx.y * blockDim.x
 + threadIdx.z * blockDim.x * blockDim.y;
int tid = block_offset + thread_offset;
dout[tid] = func(din[tid]);

}

Vector Addition

29

void VecAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * sizeof(int));
cudaMalloc(&dB, n * sizeof(int));
cudaMalloc(&dC, n * sizeof(int));
cudaMemcpy(dA, Acpu, n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);
cudaFree(dB);
cudaFree(dC);

}

Matrix Addition

30

void MatAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * n * sizeof(int));
cudaMalloc(&dB, n * n * sizeof(int));
cudaMalloc(&dC, n * n * sizeof(int));
cudaMemcpy(dA, Acpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
int THREADS = 32;
int BLOCKS = (n + THREADS - 1) / THREADS;
dim3 threads(THREADS, THREADS); // should be <= 1024
dim3 blocks(BLOCKS, BLOCKS);
MatAddKernel<<<blocks, threads>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);
cudaFree(dB);
cudaFree(dC);

}

• Basic GPU CUDA operations

omemory allocation

o data movement

o creating threads and running on SMs
▪ specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
▪ using building index variables to refer to the data

31

Summary

• Chap 2,3,4 of ”Programming Massively Parallel Processors,

4th Ed.

https://learning.oreilly.com/library/view/programming-

massively-

parallel/9780323984638/?sso_link=yes&sso_link_from=cmu

-edu

• Free for CMU students

32

Recommended Reading

	Slide 1: GPU Programming
	Slide 2: Recap
	Slide 3: H100 Architecture
	Slide 4: H100 SM
	Slide 5: New in H100, FP8 operations
	Slide 6: Assignment 1
	Slide 7: Course Project
	Slide 8: Outline
	Slide 9: CUDA Kernel
	Slide 10: Running GPU kernel
	Slide 11: CPU-GPU Data Movement
	Slide 12: CUDA Operations
	Slide 13: Allocate GPU Memory
	Slide 14: Free GPU memory
	Slide 15: GPU memory
	Slide 16: Data Movement
	Slide 17: New in H100: Tensor Memory Accelerator (TMA)
	Slide 18: Asynchronous execution in Hopper GPU
	Slide 19: Declaration of Host/Device function
	Slide 20: Defining Functions to be executed on GPU
	Slide 21: Calling Kernel at Runtime
	Slide 22: Device Runtime Variables
	Slide 23: Calling CUDA Kernel from CPU
	Slide 24: CUDA Code Examples for Matrix Computation
	Slide 25: Matrix Multiplication with CUDA
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Vector Addition
	Slide 30: Matrix Addition
	Slide 31: Summary
	Slide 32: Recommended Reading

