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• GPU is composed of 

o streaming processing units (SMs)
▪ each with four partitions of 32 cores

▪ shared L1 cache 

omemory

o L2 cache: share with all SMs

• Threads organized in

o grid of thread blocks

o each block is divided into warps 

running on one SM.
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H100 Architecture
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132/114 SMs, 80G HBM3 



4 partitions per SM, each with 32 

cores ➔ 32 threads each

128 cores per SM

64KB register per partition (fastest 

to access)

256KB shared L1 cache per SM
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H100 SM
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New in H100, FP8 operations



https://llmsystem.github.io/llmsystemhomework/assignment_1

/

recommend to use PSC. Other platform is not guaranteed.  

Due date: Jan 28, 2026. 

Late policy: 

https://llmsystem.github.io/llmsystem2026spring/docs/Logistic

s#late-day-policy
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Assignment 1

https://llmsystem.github.io/llmsystemhomework/assignment_1/
https://llmsystem.github.io/llmsystemhomework/assignment_1/


Reminder: start form your project team (2-3 students)

Submit your team member names by 2/18/2026

project proposal due 2/27/2026

Initial ideas for project (feel free to form your own): 

https://llmsystem.github.io/llmsystem2026spring/docs/Project

s 
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Course Project

https://llmsystem.github.io/llmsystem2026spring/docs/Projects
https://llmsystem.github.io/llmsystem2026spring/docs/Projects


• Basic GPU CUDA operations

omemory management

o creating threads

o defining kernel functions for arithmetics

• Matrix/Tensor Computation on GPU
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Outline



• Each kernel is a function (program) that runs on GPU

• Program itself is serial

• Can simultaneously run many (10k) threads at the same 

time

• Using thread index to compute on right portion of data
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CUDA Kernel



• CPU invokes kernel grid

• Thread blocks in grid distributed 

to SMs

• Execute concurrently

o Each SM runs multiple thread 

blocks

o Each core runs one thread from 

one thread block
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CPU-GPU Data Movement
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GPU

GPU Memory
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• CPU allocates GPU memory: cudaMalloc

• CPU copies data to GPU memory (host to device): 

cudaMemcpy

• CPU launches GPU kernels

• CPU copies results from GPU (device to host): cudaMemcpy

• Freeing GPU memory cudaFree
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CUDA Operations



Allocate GPU Memory
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cudaError_t cudaMalloc(void** devPtr, size_t size)
devPtr- Pointer to allocated device memory

size- Requested allocation size in bytes

int *dA;
cudaMalloc(&dA, n * sizeof(int));

float *dB;
cudaMalloc(&dB, n * sizeof(float));

The allocated mem is accessible by all threads

devPtr: 
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• donot forgot!

cudaError_t cudaFree(void *devPtr); 

Parameters

devPtr: A device pointer to the memory you want to free. 
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Free GPU memory



• Each thread has private registers (fastest to access)

• Each thread block has shared memory

o Visible to all threads in a block

o __shared__

• All threads can access global gpu memory

o Persistent across kernel launches in the same app
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GPU memory



Data Movement
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cudaError_t cudaMemcpy(void* dst, const void* src, 
size_t count, cudaMemcpyKind kind)
Parameters: 

dst: Destination memory address

src: Source memory address

count: Size in bytes to copy

kind: Type of transfer, cudaMemcpyHostToDevice or 
cudaMemcpyDeviceToHost

cudaMemcpy(dGPU, hCpu, n * sizeof(int), cudaMemcpyHostToDevice);

Copy data from devices: cpu to gpu, gpu to cpu



New in H100: Tensor Memory Accelerator 

(TMA)
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void cuda::memcpy_async(void* destination, void const* source, 

Shape size, cuda::barrier<Scope, CompletionFunction>& barrier);

barrier.wait()



Asynchronous execution in Hopper GPU
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• Both host and device code in same .cu file

• Indicate where the code will run
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Declaration of Host/Device function

keyword call on execute on

__global__ host (cpu) device (gpu)

__device__ device (gpu) device (gpu)

__host__ host host



Defining Functions to be executed on GPU
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__global__ void VecAddKernel(int* A, int* B, int* C, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {

C[i] = A[i] + B[i];
}

}

int main() {
 VecAddKernel<<<1, N>>>(A, B, C, N);
}

Define kernel function, __global__



• Host program specifies grid-block-threads configurations for 

kernel at run time

o Dg and Db are either dim3 or int
dim3 Dg(4, 2, 1);
dim3 Db(8, 8, 1);
kernelFuncName<<<Dg, Db>>>(args)

• Dg: size of grid (num. of blocks)

o Dg.x * Dg.y * Dg.z is num. of blocks

• Db: size of block

o Db.x * Db.y * Db.z is num. of threads per block, <=1024) 21

Calling Kernel at Runtime



• Host launches kernels on a gpu device

• Each kernel thread needs to know which thread it is running

• Compiler generates build-in variables, with x, y, z fields
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Device Runtime Variables

gridDim dim3 dimensions of grid

blockIdx uint3 index of block within grid

blockDim dim3 dimensions of block

threadIdx uint3 index of thread within block



Calling CUDA Kernel from CPU
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// n: the size of the vector
int n = 1024;
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) /       
 threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);

Running kernels on GPU



CUDA Code Examples for 

Matrix Computation
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• See notebook example.

• https://github.com/llmsystem/llmsys_code_examples/blob/m

ain/simple_cuda_demo/CUDA_Code_Examples.ipynb

• You may upload and run it in Google Colab. 
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Matrix Multiplication with CUDA

https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
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__global__ void MatAddKernel(float* A, float* B, float* C, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
C[i * N + j] = A[i * N + j] + B[i * N + j];

}

int main() {
int N = 32; 
dim3 threads_per_block(N, N);
int num_blocks = 1;
MatAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, N);

}



27

int main() {
dim3 threads_per_block(2, 4, 8);
dim3 blocks_per_grid(2, 3, 4);
fullKernel<<<blocks_per_grid, threads_per_block>>>(some_input, 
some_output);

}

24 blocks per grid

64 threads per block

1536 threads in total 

can you run this simultaneously on A6000?
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__global__ void fullKernel(float* din, float* dout) {
int block_id = blockIdx.x + blockIdx.y * gridDim.x + blockIdx.z * 
gridDim.x * gridDim.y;
int block_offset = block_id * blockDim.x * blockDim.y * blockDim.z;
int thread_offset = threadIdx.x 
 + threadIdx.y * blockDim.x 
 + threadIdx.z * blockDim.x * blockDim.y;
int tid = block_offset + thread_offset;
dout[tid] = func(din[tid]);

}



Vector Addition
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void VecAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * sizeof(int));
cudaMalloc(&dB, n * sizeof(int));
cudaMalloc(&dC, n * sizeof(int));
cudaMemcpy(dA, Acpu, n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA); 
cudaFree(dB); 
cudaFree(dC);

}



Matrix Addition
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void MatAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * n * sizeof(int));
cudaMalloc(&dB, n * n * sizeof(int));
cudaMalloc(&dC, n * n * sizeof(int));
cudaMemcpy(dA, Acpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
int THREADS = 32;
int BLOCKS = (n + THREADS - 1) / THREADS;
dim3 threads(THREADS, THREADS); // should be <= 1024
dim3 blocks(BLOCKS, BLOCKS);
MatAddKernel<<<blocks, threads>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA); 
cudaFree(dB); 
cudaFree(dC);

}



• Basic GPU CUDA operations

omemory allocation

o data movement

o creating threads and running on SMs
▪ specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
▪ using building index variables to refer to the data
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Summary



• Chap 2,3,4 of ”Programming Massively Parallel Processors, 

4th Ed.  

https://learning.oreilly.com/library/view/programming-

massively-

parallel/9780323984638/?sso_link=yes&sso_link_from=cmu

-edu

• Free for CMU students
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Recommended Reading
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