LLIVI OYS
GPU Programming

Lel LI

A Language Carnegie Mellon University

Technologies .
Inetitute School of Computer Science

L]

Recap

« GPU is composed of

o streaming processing units (SMs)
= each with four partitions of 32 cores
» shared L1 cache

o memory
o L2 cache: share with all SMs

Grid (GPU
| | ng:sadBI;c; /’Q
* Threads organized in il Sy
o grid of thread blocks -~ w>:| %.--.
o each block is divided into warps =~

running on one SM.

H100 Architecture
132/114 SMs, 800G HBM3

" " - . " - " v - ’ 1 " "~ -~ ' "
WA - Wies LR . . . AL . o aw el e A . ML e Wiee e se - - ML re LY B -~ ve RO

L0 Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatech Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP3Z FP32 FP&4 FP32 FPa2 FP&4
[P] FP32 FP32 FP&4 FP32 FP32 FP&4
FP32 FP32 FP&4 FP32 FP3I2 FP&4
I I WI FPIZ FP32 FP&4 FP32 FPI2 FP&4
) FP3Z FP32 FP&4 FP32 FP32 FPE4
FP32 FP32 FPE4 FP32 FP32 FPe4
FPIZ FP32 FP&4 FP32 FPa2 FP&4
CO reS 9 32 th reads eaC h FP3Z FP32 FP&4 TENSOR CORE FPIZ FP32 FP&4 TENSOR CORE
FPI2 FP32 FPE4 4™ GENERATION FP32 FP32 FPe4 4" GENERATION
FP3Z2 FP32 FP64 FP32 FPa2 FP&4
FP3Z FPa2 FP&4 FP32 FP32 FP&4
FPI2 FP32 FP&4 FP32 FP3I2 FP&4
FPIZ FP32 FP64 FP32 FP32 FP&4
FP32 FP32 FP&4 FP32 FPI2 FP64
FPI2 FP32 FP&4 FP32 FP32 FP&4
/I 28 r r. S M FPIZ FP32 FP&4 FP32 FPI2 FP&4
W LDV LiDv (] LDV LoV LoV LD LoV LOv LoV (Wi) L L Lo
C O e S p e 8T 8T 8T 8T 8T 8T 8T SFU 1 T 8T ST 8T 8T 8T 8T SFU
L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
. . . Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
04KB register per partition (fastest
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FPe4
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FP32 FP&4 INT3Z FP32 FP32
INT32 FP32 FP32 FP&4 INT32 FP32 FP32
INT3Z FP32 FPI2 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FPi2 FP&4 INT32 FP3I2 FP32 FPE4
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP&4 TENSOR CORE INT32 FPI2 FP32 FP&4 TENSOR CORE
INT32 FP32 FP32 FPE4 4™ GENERATION INT3Z FP3Z FP32 ' 4™ GENERATION
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FP32 FP&4 INT32Z FP32 FP32 FP&4
S are C aC e er INTS2 FPa2 FP32 FPed INT32 FP32 FP32
INT32 FP32 FP32 FP&4 INT32Z FP32 FP32 FP&4

INT32 FP3Z FPI2 FP&4 INT32Z FP3I2 FP32 FP&4
INT32 FP32 FPI2 FP&4 INT32 FPI2 FP32 FPE4
INT32 FP32 FP32 FP&4 INT32 FPI2 FPI2 FPE4

Lo LoV Loy LDV Loy Loy Loy LOv Loy Lou Lo Lo (s) Lo Lo Lo
5T 5T 5T 5T 5T 5T 5T 5T SFU 5T ST 8T T ST sT SFU

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

New in H100, FP8 operations

c Range Precision
» exponent mantissa

FP32 ST L

FP16 8—(IIIDIIIIIIIIT]
BF16 S(IIIIIIT(IIII1]

: 25

e B . -

; y \ " S_m I
’ Cud

: S .l |

Allocate 1 bit to either
range or precision

7

.

FP8 FP8
matrix | matrix

multiply

accumulate into
FP32 or FP16

bias/act/...

convert

FP32|FP16|BF16|FP8
matrix

Support for multiple accumulator

and output types

Assignment 1

https.//limsystem.qgithub.io/limsystemhomework/assignment 1
/

recommend to use PSC. Other platform is not guaranteed.
Due date: Jan 28, 2026.

Late policy:
https://limsystem.github.io/limsystem2026spring/docs/Logistic
s#late-day-policy

https://llmsystem.github.io/llmsystemhomework/assignment_1/
https://llmsystem.github.io/llmsystemhomework/assignment_1/

Course Project
Reminder: start form your project team (2-3 students)
Submit your team member names by 2/18/2026
project proposal due 2/27/2026
Initial ideas for project (feel free to form your own):

https://limsystem.qithub.io/limsystem2026spring/docs/Project
S

https://llmsystem.github.io/llmsystem2026spring/docs/Projects
https://llmsystem.github.io/llmsystem2026spring/docs/Projects

Outline

=« Basic GPU CUDA operations

o memory management
o creating threads
o defining kernel functions for arithmetics

« Matrix/Tensor Computation on GPU

CUDA Kernel

Each kernel is a function (program) that runs on GPU
Program itself is serial

Can simultaneously run many (10k) threads at the same
time

Using thread index to compute on right portion of data

Grid

Running GPU kernel

Thread| [Thread||Thread

« CPU invokes kernel grid Block || Block || Block
/ / N\
+ Thread blocks in grid distributed /
to SMs
» Execute concurrently \\(\}GPU) /
o Each SM runs multiple thread SM J SM J SM J
blocks
o Each core runs one thread from (0 0
one thread block SM J SM J SM J

CPU-GPU Data Movement

{ CPU

ﬂ 604~512GB/s

—

-

J PCle
32 GB/s

GPU

GPU Memory

/68GB/s

e ED

J

|
84

J

11

CUDA Operations

CPU allocates GPU memory: cudaMalloc

CPU copies data to GPU memory (host to device):
cudaMemcpy

CPU launches GPU kernels
CPU copies results from GPU (device to host): cudaMemcpy

Freeing GPU memory cudaFree

12

Allocate GPU Memory

cudaError_t cudaMalloc(void** devPtr, size t size)

devPtr- Pointer to allocated device memory
size- Requested allocation size 1n bytes

int *dA;
cudaMalloc(&dA, n * sizeof(int));

float *dB;
cudaMalloc(&dB, n * sizeof(float));

&devPtr (CPU mem)
306 306
| devPtr:
=Y
GPU memory

The allocated mem is accessible by all threads

1213 14 15 16

13

Free GPU memory

* donot forgot!

cudaError_t cudaFree(void *devPtr);

Parameters

devPtr: A device pointer to the memory you want to free.

14

GPU memory
« Each thread has private registers (fastest to access)

* Each thread block has shared memory

o Visible to all threads in a block
o __shared

* All threads can access global gpu memory
o Persistent across kernel launches in the same app

RT CORE

| 2nd Generation —

15

Data Movement

Copy data from devices: cpu to gpu, gpu to cpu

cudaError_t cudaMemcpy(void* dst, const void* src,
size_t count, cudaMemcpyKind kind)
Parameters:
dst: Destination memory address
src: Source memory address
count: Size m bytes to copy
kind: Type of transfer, cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost

cudaMemcpy(dGPU, hCpu, n * sizeof(int), cudaMemcpyHostToDevice);

16

New in H100: Tensor Memory Accelerator
(TMA)

vold cuda::memcpy async(void* destination, void const™® source,
Shape size, cuda::barrier<Scope, CompletionFunction>& barrier);

barrier.wait()

padding

_ Tensor height

* Tensor
stride

.

base:addr Tensor width

17

Asynchronous execution in Hopper GPU

Copy 1o Global

CUDA Programming Model

New for H100
Exposure
Barrier.arrive(), ;A_synchronous Barrier Asynchronous Transaction Barrier
Barrier.wait() iWaiter spins in SMEM Waiter sleeps until all threads arrive

Memcpy_async() {Direct copy to SMEM Asynchronous mem copy unit (called TMA)

18

Declaration of Host/Device function

 Both host and device code in same .cu file

* |ndicate where the code will run

keyword call on execute on
__global__ host (cpu) device (gpu)
__device__ device (gpu) device (gpu)

__host__ host host

19

Defining Functions to be executed on GPU

Define kernel function, _ global

__global __ void VecAddKernel(int* A, int* B, int* C, int n) {
int i = blockDim.x * blockldx.x + threadldx.x;
if (i<n){
C[i] = Ali] + B[i[;
}
}

int main() {
VecAddKernel<<<1, N>>>(A, B, C, N);
}

20

Calling Kernel at Runtime

» Host program specifies grid-block-threads configurations for
kernel at run time

o Dg and Db are either dim3 or int
dim3 Dg(4, 2, 1);
dim3 Db(8, 8, 1);
kernelFuncName<<<Dg, Db>>>(args)

e Dg: size of grid (num. of blocks)
o Dg.x * Dg.y * Dg.z is num. of blocks

e Db: size of block
o Db.x * Db.y * Db.z is num. of threads per block, <=1024)

21

Device Runtime Variables

* Host launches kernels on a gpu device

» Each kernel thread needs to know which thread it is running

« Compiler generates build-in variables, with x, vy, z fields

gridDim dim3 dimensions of grid

blockldx uint3 iIndex of block within grid
blockDim dim3 dimensions of block
threadldx uint3 iIndex of thread within block

22

Calling CUDA Kernel from CPU

Running kernels on GPU

// n: the size of the vector
int n =1024;

int threads_per_block = 256;

int num_blocks = (n + threads_per _block - 1) /
threads_per_block;

VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);

23

CUDA Code Examples for
Matrix Computation

Matrix Multiplication with CUDA

* See notebook example.

 https://github.com/limsystem/limsys code examples/blob/m

ain/simple _cuda demo/CUDA Code Examples.ipynb

* You may upload and run it in Google Colab.

25

https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/simple_cuda_demo/CUDA_Code_Examples.ipynb

__global _ void MatAddKernel(float* A, float™ B, float™ C, int N) {
int i = blockldx.x * blockDim.x + threadldx.x;
int j = blockldx.y * blockDim.y + threadldx.y;
Ci*N+jl=A[i*N+j]+B[i * N+j];

}

int main() {
int N =32;
dim3 threads_per_block(N, N);
int num_blocks = 1;
MatAddKernel<<<num_blocks, threads per block>>>(dA, dB, dC, N);

26

int main() {
dim3 threads per block(2, 4, 8);
dim3 blocks per grid(2, 3, 4);
fullkernel<<<blocks per_ grid, threads per block>>>(some_input,
some_output);

24 blocks per grid

04 threads per block

1536 threads in total

can you run this simultaneously on A60007

27

__global __ void fullKernel(float™ din, float* dout) {
int block id = blockldx.x + blockldx.y * gridDim.x + blockldx.z *
gridDim.x * gridDim.y;
int block_offset = block_id * blockDim.x * blockDim.y * blockDim.z;
int thread_offset = threadldx.x
+ threadldx.y * blockDim.x
+ threadldx.z * blockDim.x * blockDim.y;
int tid = block_offset + thread offset;
dout[tid] = func(din[tid]);

28

Vector Addition

void VecAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * sizeof(int));
cudaMalloc(&dB, n * sizeof(int));
cudaMalloc(&dC, n * sizeof(int));
cudaMemcpy(dA, Acpu, n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / threads_per_block;
VecAddKernel<<<num_blocks, threads per_block>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);
cudaFree(dB);
cudaFree(dC);

29

Matrix Addition

void MatAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {

int *dA, *dB, *dC;

cudaMalloc(&dA, n * n * sizeof(int));

cudaMalloc(&dB, n * n * sizeof(int));

cudaMalloc(&dC, n * n * sizeof(int));

cudaMemcpy(dA, Acpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
int THREADS = 32;

int BLOCKS = (n + THREADS - 1) / THREADS;

dim3 threads(THREADS, THREADS); // should be <= 1024

dim3 blocks(BLOCKS, BLOCKS);

MatAddKernel<<<blocks, threads>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA);

cudaFree(dB);

cudaFree(dC);

30

Summary

Basic GPU CUDA operations

o memory allocation
o data movement

o creating threads and running on SMs
» specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
» using building index variables to refer to the data

31

Recommended Reading

« Chap 2,3,4 of "Programming Massively Parallel Processors,
41 Ed.

https://learning.oreilly.com/library/view/programming-
massively-

parallel/9780323984638/?ss0_link=yes&sso_link_from=cmu
-edu

* Free for CMU students

32

	Slide 1: GPU Programming
	Slide 2: Recap
	Slide 3: H100 Architecture
	Slide 4: H100 SM
	Slide 5: New in H100, FP8 operations
	Slide 6: Assignment 1
	Slide 7: Course Project
	Slide 8: Outline
	Slide 9: CUDA Kernel
	Slide 10: Running GPU kernel
	Slide 11: CPU-GPU Data Movement
	Slide 12: CUDA Operations
	Slide 13: Allocate GPU Memory
	Slide 14: Free GPU memory
	Slide 15: GPU memory
	Slide 16: Data Movement
	Slide 17: New in H100: Tensor Memory Accelerator (TMA)
	Slide 18: Asynchronous execution in Hopper GPU
	Slide 19: Declaration of Host/Device function
	Slide 20: Defining Functions to be executed on GPU
	Slide 21: Calling Kernel at Runtime
	Slide 22: Device Runtime Variables
	Slide 23: Calling CUDA Kernel from CPU
	Slide 24: CUDA Code Examples for Matrix Computation
	Slide 25: Matrix Multiplication with CUDA
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Vector Addition
	Slide 30: Matrix Addition
	Slide 31: Summary
	Slide 32: Recommended Reading

