LLIVI OYS
GPU Programming

Lel LI

A Language Carnegie Mellon University

Technologies .
Inetitute School of Computer Science

L]

Recap: (Autoregressive) Language Model

T
P(x,.7) = 1_[P(Xt+1(%X1.¢)
t=1

P(xt]|x<t)
0.6
Pgh IS d City of corn 0.02

[Decoder]

(BOS] Pgh s a city of

size(B)
10,000

1,000

100

10

2016

Recap: Scaling of LLMs

(the need for system optimization) Kimi K2
¢ GPT4 DeepSeek-VS0
PALM .
¢ Gopher o
¢ GPT3 LLaMA3.1 Qwen3
GPT2
¢ GPTI

¢ Transformer

2017 2018 2019 2020 2021 2022 2023 2024 2025 3

Recap: Important Topics in LLM systems

* Programming model
o relies on good abstraction

 Latency/Throughput
o Data movement
o Computation vs memory

» Reliability

* Security

Outline
—>+ Neural Network Layer and low-level operators
« Components of A GPU Server
« GPU Architecture

* Program Execution on GPU

Text Classification

Classifying the sentiment of online movie reviews. (Positive,
negative, neutral)

Spider-Man is an almost-perfect extension of the 2
experience of reading comic-book adventures.

It was a boring! It was a waste of a movie to even be
made. It should have been called a family reunion.

(}I

A Simple Feedforward Neural Network

 Neural network layers Softmax

e Elmbeddlng (lookup table) AV

o Linear 1

o Relu Linear

o Average pooling x

o Softmax Rglu
Linear

Embedding

‘It Is a good movie”

Low-level Computing Operators

Matrix multiplication Softmax

Flement-wise ops (add, scale, relu) AV

Reduce ops (sum, avg) Linear
. . . Relu
Efficient computation requires GPUs "
Linear
Embedding

“It is a good movie”

Outline
* Neural Network Layer and low-level operators
=+ Components of A GPU Server
« GPU Architecture

* Program Execution on GPU

A Modern Computlng Server

A Sample Config (my lab)
CX4860s-EK9 4U server acrus
o 2XAMD EPYC 9354 CPU mappedio GPU
e 16x 64GB DDR5 mem
« 4x Intel D7 P5520
15.36TB Gend NVMe Y | SORS
SSD !
. 8x Nvidia ABO00 48GB ~ ®Mmemamns jﬁ”ﬁ‘
. 4x 2slot NVLink e

4 GPUs
(PCle Gen4 x16)
mapped to GPUC

2 CPUs

G 7 ®
Storage)) '

4x 2.5" NVMe ‘ @))) G |
4 A

) .
N

= 10
Y

Communlcatlon

GPU-to-GPU

* NVLIink 112.5 GB/s (Pl Gend x16)

- PCle Gen4 32 GB/s ™"
(16 lanes x 2 GB/s per
lane)

Memory
24 DIMM DDR5

8 Internal fans

Storage
4x 2.5" NVMe

=

‘‘‘‘‘‘

I | I 4 GPUs
= ; ' (PCle Gen4 x16)

mapped to GPUC

2 CPUs

11

Modern Computing Server Architecture

PClex16 f~***1 2+1 xGMI JL PClex16

ZOYZONZ0IZ0] LOJI0JL0IiZ0]

4x PCle Gen5x16 double width GPUs 4x PCle Gen5x16 double width GPUs

| —

et |
N
f—T
f—T =]

Why is it relevant?
Considering moving gradients from one GPU to another
(in data parallel) 12

CPU

] |
AMD EPYC 9754
128cores
256threads
2.25GHz
250MB L3

Computing Devices

GPU

Intel Xeon Nvidia A6000

8593Q 10,752 cores

o4cores 48GB

128threads 38.7 TFLOPS

2.2GHz

320MB L3 More powerful than the #1

supercomputer in 2007

13

Outline
* Neural Network Layer and low-level operators
« Components of A GPU Server
=> « GPU Architecture

* Program Execution on GPU

14

GPU Lineup

Architecture Blackwell Hopper Ampere

GPU Name NVIDIA B200 NVIDIA H100 NVIDIA A100
FP64 37 teraFLOPS 34 teraFLOPS 9.7 teraFLOPS
FP64 Tensor Core 377 teraFLOPS 67 teraFLOPS 19.5 teraFLOPS
FP32 75 teraFLOPS 67 teraFLOPS 19.5 teraFLOPS
FP32 Tensor Core 2.2 petaFLOPS 989 teraFLOPS 312 teraFLOPS
FP16/BF16 Tensor Core 4.5 petaFLOPS 1979 teraFLOPS 624 teraFLOPS
INTS Tensor Core 9 petaOPs 3958 teraOPs 1248 teraOPs
FP8 Tensor Core 9 petaFLOPS 3958 teraFLOPS -

FP4 Tensor Core 18 petaFLOPS - -

GPU Memory 192GB HBM3e 80GB HBM3 80GB HBM2e
Memory Bandwidth Up to 7.7TB/s 3.2TB/s 2TB/s

15

GPU Architecture

Nvidia RTX A6000
(GA102)

34 SMs
(Streaming
Multiprocessors)
12 memory
controller (32bit
ea.) total 3840bit.
oMB L2 cache.

H100 Architecture
132/114 SMs, 800G HBM3

" " - . " - " v - ’ 1 " "~ -~ ' "
WA - Wies LR . . . AL . o aw el e A . ML e Wiee e se - - ML re LY B -~ ve RO

SM

LD i-Cache + Warp Scheduler = Dispatoh (32 theeadicik)

Streaming Multiprocessor

4 partitions per SM, each with 32 e o
cores =» 32 threads each

LO i-Cache + Warp Scheduler + Dispatch (32 thresdicik)

128 cores per SM

Register File (16,384 x 32-bit)

04KB register per partition (fastest e
to access)

TENSOR
CORE

INT32 3rd Gen

128KB shared L1 cache per SM

128 FP32 operations in one cycle

LD i-Cache = Warp Scheduler = Dispatoh (132 theeadicik)

TENSOR
CORE
3rd Gen

FP32 FP32
!
INT32

LD i-Cache + Warp Scheduler + Dispatch (32 thresdiclk)

egister File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

FP32 FP32
!
INT32

| _| RTCORE —_
| '2nd|Generatiun“l.fi-

L0 Instruction Cache L0 Instruction Cache
‘Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatech Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP3Z FP32 FP&4 FP32 FPa2 FP&4
[P] FP32 FP32 FP&4 FP32 FP32 FP&4
FP32 FP32 FP&4 FP32 FP3I2 FP&4
I I WI FPIZ FP32 FP&4 FP32 FPI2 FP&4
) FP3Z FP32 FP&4 FP32 FP32 FPE4
FP32 FP32 FPE4 FP32 FP32 FPe4
FPIZ FP32 FP&4 FP32 FPa2 FP&4
CO reS 9 32 th reads eaC h FP3Z FP32 FP&4 TENSOR CORE FPIZ FP32 FP&4 TENSOR CORE
FPI2 FP32 FPE4 4™ GENERATION FP32 FP32 FPe4 4" GENERATION
FP3Z2 FP32 FP64 FP32 FPa2 FP&4
FP3Z FPa2 FP&4 FP32 FP32 FP&4
FPI2 FP32 FP&4 FP32 FP3I2 FP&4
FPIZ FP32 FP64 FP32 FP32 FP&4
FP32 FP32 FP&4 FP32 FPI2 FP64
FPI2 FP32 FP&4 FP32 FP32 FP&4
/I 28 r r. S M FPIZ FP32 FP&4 FP32 FPI2 FP&4
W LDV LiDv (] LDV LoV LoV LD LoV LOv LoV (Wi) L L Lo
C O e S p e 8T 8T 8T 8T 8T 8T 8T SFU 1 T 8T ST 8T 8T 8T 8T SFU
L0 Instruction Cache L0 Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
. . . Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
04KB register per partition (fastest
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FPe4
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FP32 FP&4 INT3Z FP32 FP32
INT32 FP32 FP32 FP&4 INT32 FP32 FP32
INT3Z FP32 FPI2 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FPi2 FP&4 INT32 FP3I2 FP32 FPE4
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP84
INT32 FP32 FP32 FP&4 TENSOR CORE INT32 FPI2 FP32 FP&4 TENSOR CORE
INT32 FP32 FP32 FPE4 4™ GENERATION INT3Z FP3Z FP32 ' 4™ GENERATION
INT32 FP32 FP32 FP&4 INT32 FP32 FP32 FP&4
INT32 FP32 FP32 FP&4 INT32Z FP32 FP32 FP&4
S are C aC e er INTS2 FPa2 FP32 FPed INT32 FP32 FP32
INT32 FP32 FP32 FP&4 INT32Z FP32 FP32 FP&4

INT32 FP3Z FPI2 FP&4 INT32Z FP3I2 FP32 FP&4
INT32 FP32 FPI2 FP&4 INT32 FPI2 FP32 FPE4
INT32 FP32 FP32 FP&4 INT32 FPI2 FPI2 FPE4

Lo LoV Loy LDV Loy Loy Loy LOv Loy Lou Lo Lo (s) Lo Lo Lo
5T 5T 5T 5T 5T 5T 5T 5T SFU 5T ST 8T T ST sT SFU

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

New in H100, FP8 operations

c Range Precision
» exponent mantissa

FP32 ST L

FP16 &—{IIIIIIIIIIIL
BF16 ST

: 25

e B . -

; y \ " S_m I
’ Cud

: S .l |

Allocate 1 bit to either
range or precision

7

.

FP8 FP8
matrix | matrix

multiply

accumulate into
FP32 or FP16

bias/act/...

convert

FP32|FP16|BF16|FP8
matrix

Support for multiple accumulator

and output types

20

CPU vs. GPU
CPU (AMD EPYC 9754) GPU (A6000)

num. threads 256 10752
clock 2.25 GHz 1.8 GHz
compute 576 GFlops 38.7 TFlops
Power 360W 300W

21

Outline
* Neural Network Layer and low-level operators
« Components of A GPU Server
« GPU Architecture

=+ Program Execution on GPU

22

GPU Programming Model

CPU — host
o Run normal program (C++)

GPU — device
o Run cuda kernel code

CUDA: one part runs on CPU, one part runs on GPU

Needs to move data between system memory and GPU
memory

23

SIMT Execution on GPU

Single Instruction Multiple
Threads

Threads are grouped into
Thread Blocks

Thread Blocks are grouped
into Grid

Kernel executed as Grid of
Blocks of Threads

-

GPU
sM || sSM || sm
sM || sM || sm

|

84

How Instructions are executed on GPU

-

GPU
Grid . . .
| SM SM || SM
Thread||Thread Threag// . - -
Block | [Block || Block //, sM Il sM || sm
\

How Kernel Threads are Executed

« SM partition a thread block into warps

« Warp is the unit of GPU creating, managing, scheduling and
executing threads

» Each warp contains 32 threads (why 327?)
o Start at same program address
o Have own program counter and registers
o Execute one common instruction at a cycle
o Can branch and execute independently

26

Warp Execution on GPU

» Execution context stays on SM for lifetime of warp (Program
counter, Registers, Shared memory)

« Warp-to-warp context switch is instant

» At running time, warp scheduler
o Chooses warp with active threads
o Issues instruction to warp’s threads

* Number of warps on SM depends on mem requested and
avallable

27

Executing one Thread block on one SM

4 warps can be executed in parallel at one time on each SM

Grid g GPU
Thread Block_—++— T~
Warp1 [| WarpZ2 o S.M
Warp3| |Warp4| |2 partitionﬁ
N N R I LI
War3 Warp}\ |
_///)
\\ _— I /
-

CPU-GPU Data Movement

{ CPU

ﬂ 604~512GB/s

—

-

J PCle
32 GB/s

GPU

GPU Memory

/68GB/s

e ED

J

|
84

J

29

CUDA Kernel

Each kernel is a function (program) that runs on GPU
Program itself is serial

Can simultaneously run many (10k) threads at the same
time

Using thread index to compute on right portion of data

30

Compiling CUDA Code

Integrated C programs with CUDA extensions

v

NVCC Compiler

Host Code @ @ Device Code (PTX)

Host C preprocessor, Device just-in-time
compiler/ linker compiler

@ U

Heterogeneous Computing Platform with
CPUs, GPUs

nvcce -0 output.so --shared src.cu -Xcompiler -fPIC

31

Summary

 Neural network

o Is composed of layers, each layer defines input and output
vectors/embeddings

o Each layer's computation consists of low-level operators, which is
executed on a computing device (GPU, CPU, FPGA, etc)

32

Summary

 GPU is composed of

o streaming processing units (SMs)
= each with four partitions of 32 cores
» shared L1 cache

o memory
o L2 cache: share with all SMs

* Threads organized in
o grid of thread blocks
o each block is divided into warps running in parallel on one SM.

33

» Write GPU Programs

Next

34

Assignment 1

https://limsystem.github.io/limsystemhomework/

35

* Due today

Quiz 1.2 on canvas

36

	Slide 1: GPU Programming
	Slide 2: Recap: (Autoregressive) Language Model
	Slide 3: Recap: Scaling of LLMs (the need for system optimization)
	Slide 4: Recap: Important Topics in LLM systems
	Slide 5: Outline
	Slide 6: Text Classification
	Slide 7: A Simple Feedforward Neural Network
	Slide 8: Low-level Computing Operators
	Slide 9: Outline
	Slide 10: A Modern Computing Server
	Slide 11: Communication
	Slide 12: Modern Computing Server Architecture
	Slide 13: Computing Devices
	Slide 14: Outline
	Slide 15: GPU Lineup
	Slide 16: GPU Architecture
	Slide 17: H100 Architecture
	Slide 18: Streaming Multiprocessor
	Slide 19: H100 SM
	Slide 20: New in H100, FP8 operations
	Slide 21: CPU vs. GPU
	Slide 22: Outline
	Slide 23: GPU Programming Model
	Slide 24: SIMT Execution on GPU
	Slide 25: How instructions are executed on GPU
	Slide 26: How Kernel Threads are Executed
	Slide 27: Warp Execution on GPU
	Slide 28: Executing one Thread block on one SM
	Slide 29: CPU-GPU Data Movement
	Slide 30: CUDA Kernel
	Slide 31: Compiling CUDA Code
	Slide 32: Summary
	Slide 33: Summary
	Slide 34: Next
	Slide 35: Assignment 1
	Slide 36: Quiz 1.2 on canvas

