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The era of Large Language Models (LLMs)

LLMChatting

BizOps
Content 
creation

Dev tools

Programming

Served by GPUs
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LLM System Today Optimize Throughput
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Inference process of LLMs
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Repeat until the sequence
● Reaches its pre-defined maximum length (e.g., 2048 tokens)
● Generates certain tokens (e.g., “<|end of sequence|>”)



Generative LLM Inference: Autoregressive Decoding

● Pre-filling phase (0-th iteration):
○ Process all input tokens at once

● Decoding phase (all other iterations):
○ Process a single token generated from previous iteration

● Key-value cache:
○ Save attention keys and values for the following iterations to 

avoid recomputation
○ Woosuk Kwon has covered in the previous lecture ☺



Serving vs. Inference

Serving: many requests, online traffic, 

emphasize cost-per-query.

Inference: fewer request, low, 
offline traffic,

Emphsize latency 

largeb b→1



Challenge: How to efficiently serve many users requests 

While minimizing the $ cost
(= max throughput)
(= min #GPU used)

(= max GPU utilization)

One of the Key Problem in LLM Serving
largeb



Review: A Typical LLM’s Architecture
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Review: LLM Inference Compute Characteristics 
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• Compute:
• Prefill: attention and large GEMM (mostly same with training)
• Decode: s = 1, GEMM degenerates to GEMV

• Memory
• New: KV cache

• Communication
• mostly same with training

Q: howbatch size b changes the picture?



Review: LLM Inference Compute Characteristics 
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• Compute:
• Prefill: attention and large GEMM (mostly same with training)
• Decode: s = 1, GEMM degenerates to GEMV

• Memory
• New: KV cache

• Communication
• mostly same with training

Ourfocus: 
howbatch size b changes the picture?



Potential Bottleneck in Serving
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• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• Memory

• New: KV cache size grows with b
• Solution: paged attention

largeb
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LLM Decoding Timeline
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Batching Requests to Improve GPU Performance

Issues with static batching:

● Requests may complete at different iterations

● Idle GPU cycles

● New requests cannot start immediately
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Continuous Batching

Benefits:

● Higher GPU utilization

● New requests can start immediately

16Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22



Continuous Batching Step-by-Step

● Receives two new requests R1 and R2
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Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML 
systems

R2: LLM serving is

Maximum serving batch 
size = 3



Continuous Batching Step-by-Step

● Iteration 1: decode R1 and R2
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R1: optimizing ML 
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Continuous Batching Step-by-Step

● Iteration 1: decode R1 and R2
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R1: optimizing ML 
systems

R2: LLM serving is

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Continuous Batching Step-by-Step

● Receive a new request R3; finish decoding R1 and R2
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R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3



Continuous Batching Step-by-Step

● Receive a new request R3; finish decoding R1 and R2

21

R1: optimizing ML 
systems requires

R2: LLM serving is 
critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Traditional Batching

● Receive a new request R3; finish decoding R1 and R2
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R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R4: A dog is

R5: How are



Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch 
size = 3

Q:Howtobatchthese?



Traditional vs. Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are

R2: LLM serving is 
critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man



Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes 
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R1: optimizing ML 
systems requires ML

R2: LLM serving is 
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R4: A dog is

R5: How are



Continuous Batching Step-by-Step

● Iteration 3: decode R1, R3, R4
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Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch 
size = 3

R1: optimizing ML 
systems requires ML

R3: A man is

R4: A dog is

R5: How are
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Summary: Continuous Batching

● Handle early-finished and late-arrived requests more efficiently

● Improve GPU utilization

● Continuous Batching can improve the throughput by 10x compared to static

batching



Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe/Dynamo: Key Design and Implementations

● Systems and Models based on Disaggregation
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LLM System Today Optimize Throughput



Motivation: Applications have Diverse SLO

TTFT TPOT
Time to first token Time per output token
Init ial response t ime Average time between two subsequent  generated tokens

Human reading speed (P99 latency = 250ms)

Data output generation (P99 latency = 35ms)

Fast initial response

User can tolerate longer initial responseSummarization

Chatbot



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

…

High Throughput
System



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput  = 3 rps

under SLO 
criteria

can have
Low Goodput!

High Throughput
System

…



High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput  = 3 rps

under SLO 
criteria

can have
Low Goodput!

High Throughput
System

…High Throughput can 

still have Low Goodput
⇒ Poor UX 



Recall: Continuous Batching



Prefill and Decode have Distinct Characteristics

Prefill

Decode

Compute-bound

Memory-bound

One prefill saturates compute.

Must batch a lot of requests together to saturate compute



wasted time 

R1

R2

R2 arrivesRequest
arrival

Separate prefill / decode
R1 and R2 in separate GPUs

time

No Interference

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching Cause Interference



R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

R1

R2

timeRequest
arrival R2 R3 R4

R3

R4

wasted time 

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching
Batch R1~R4 together in 1 GPU

Continuous Batching Cause Interference



Higher cost 

x1

add more GPU

x4

Colocation → Overprovision Resource to meet SLO

Poor UX Good UX 

lower cost 



Colocation → Coupled Parallelism

TTFT tight, TPOT loose

Prefill

Decode

PP TP DP

Prefill and Decode have 
different preferences



Coupled Parallelism Strategy

Summary: Problems caused by Colocation

Continuous Batching Cause 
Interference



Summary: Problems caused by Colocation

Continuous Batching Cause 
Interference

Is there a better way to achieve 

better

Goodput per GPU?

Coupled Parallelism Strategy



Solution: Disaggregating Prefill and Decode



Opportunity: Disaggregating Prefill and Decoding

● Prefill-Decoding interference is immediately eliminated

● Naturally divide the SLO satisfaction problem into two optimizations:

▪ Prefill instance optimizes for TTFT.

▪ Decoding instance optimizes for TPOT.

▪ Choose the most suitable parallelism and resource allocation for each phase.

44



Colocate
1 GPU for both Prefill and Decode

Disaggregation achieves better goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

goodput



Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Simple Disaggregation

achieves 2x goodput 

(per GPU)

Disaggregation achieves better goodput

goodput



Challenges of Disaggregation

● Communication overhead for KV-Cache transmission

● The optimization target — per-GPU goodput, is difficult to optimize: 

○ The workload pattern 

○ SLO requirements 

○ Parallelism strategies 

○ Resource allocation 

○ Network bandwidth 

48



Agenda
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Core Problems

P1 - Placement: Solve X, Y given workload requirement that maximizes GPU goodput

P2 - Communication: Minimize the communication of KV Cache between XP and YD

50

XPYD



DistServe Design Overview

Definition of Placement: 

1. parallelism strategy for prefill/decoding instance 

2. the number of each instance to deploy

3. how to place them onto the physical cluster

Featured algorithms:

1. Placement for High Node-Affinity Cluster 

2. Placement for Low Node-Affinity Cluster 

3. Online Scheduling Optimization

51



Placement for High Bandwidth Cluster

Assumption: 

● Nodes are connected with high bandwidth network, e.g., InfiniBand. 

Observation: 

● We can optimize prefill and decoding instances separately. 

Algorithm Sketch: 

● Use simulation to measure the goodput for a specific parallelism config.

● Obtain the optimal parallelism config for each phase.
● Use replication to match the overall traffic.

52



Placement for Low Bandwidth Cluster

Assumption: 

● GPUs inside one node are connected with NVLINK. 

Observation: 

● KV-Cache transmission only happens between the same layer

Algorithm Sketch: 

● Similar to the previous one but constraint the same stage of prefill/decoding 

instances to be on the same node.
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Example Placement
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How Expensive is Communication of KV Caches?

● Assume: 175B Model, A100 GPUs

● If using PCIe, latency of KV Cache transfer < time of a decode step.

● NVLink + DistServe algorithm will do better
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Achieves 2.0x - 4.48x

compared to vanilla vLLM

● Chatbot: 2.0 - 3.4x

● Code Completion: 3.2x

● Summarization: 4.5x

Evaluation

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang



Continuous batching vs. disaggregation

● It seems we are going back and forth

● Actually no:

○ Continuous batching: improve GPU utilization hence throughput

○ Disaggregation: to address goodput -- throughput s.t. SLOs

● Also, key insights of CB carries to disaggregation

○ Batch attentions and MLPs differently

○ Exit finished request and pick up new request asap



Disaggregation Fun History

● 2023 end: Published and open sourced at UCSD (Hao’s lab), with a concurrent work from

Microsoft (not open source)

● 2024: OSS integration is slower compared to CB/paged attention as no significant gain

was observed

● 2024: Yet, silently become the chosen architecture replacing continuous batching at large
scale in large cooperates (e.g., Bytedance, Google)

● 2025: Deepseek-v3 uses prefill-decode disaggregation combined with different

parallelisms for prefill and decoding instances.

58



Disaggregation Fun History

● 2025: Nvidia GTC Keynote
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DistServe Architecture
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Key Components (Delta from vLLM)
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Key Function: Decode Instances Migrate KV Caches

62
On Optimizing the Communication of Model Parallelism. MLSYS’23
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A Few New Models/Systems Build on DistServe

● LMCache/Cachegen

● DeepSeek-v3 Serving

● Nvidia Dynamo
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LMCache/

65

KV

Storage

network transfer

w/ compression
KV

Storage

KV cache can also

be lossily stored
and retrieved



DeepSeek-V3: Disaggregation with Specialized Parallelisms

4 TP/SP + 8 DP
32EP in MoE

redundant experts

4 TP/SP + DP80
EP320



Nvidia Dynamo: Nvidia’s Implementation



Conclusion

● From continuous batching to disaggregation

● From Throughput to Goodput

● Disaggregation is effective to optimize goodput!

● Disaggregation achieves 2.0x - 4.48x
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