
Disaggregating prefill and decode for
goodput-optimized LLM serving

Speaker: Hao Zhang (UCSD)

Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe/Dynamo: Key Design and Implementations

● Systems and Models based on Disaggregation

2

The era of Large Language Models (LLMs)

LLMChatting

BizOps
Content
creation

Dev tools

Programming

Served by GPUs

3

LLM System Today Optimize Throughput

5

Inference process of LLMs

Layer 1

Layer N

Artificial

the

the

future

Layer 1

Layer N

Layer 1

Layer N

future

of

Intelligence isInput

Output

… … …

Repeat until the sequence
● Reaches its pre-defined maximum length (e.g., 2048 tokens)
● Generates certain tokens (e.g., “<|end of sequence|>”)

Generative LLM Inference: Autoregressive Decoding

● Pre-filling phase (0-th iteration):
○ Process all input tokens at once

● Decoding phase (all other iterations):
○ Process a single token generated from previous iteration

● Key-value cache:
○ Save attention keys and values for the following iterations to

avoid recomputation
○ Woosuk Kwon has covered in the previous lecture ☺

Serving vs. Inference

Serving: many requests, online traffic,

emphasize cost-per-query.

Inference: fewer request, low,
offline traffic,

Emphsize latency

largeb b→1

Challenge: How to efficiently serve many users requests

While minimizing the $ cost
(= max throughput)
(= min #GPU used)

(= max GPU utilization)

One of the Key Problem in LLM Serving
largeb

Review: A Typical LLM’s Architecture

9

Review: LLM Inference Compute Characteristics

10

• Compute:
• Prefill: attention and large GEMM (mostly same with training)
• Decode: s = 1, GEMM degenerates to GEMV

• Memory
• New: KV cache

• Communication
• mostly same with training

Q: howbatch size b changes the picture?

Review: LLM Inference Compute Characteristics

11

• Compute:
• Prefill: attention and large GEMM (mostly same with training)
• Decode: s = 1, GEMM degenerates to GEMV

• Memory
• New: KV cache

• Communication
• mostly same with training

Ourfocus:
howbatch size b changes the picture?

Potential Bottleneck in Serving

12

• Compute:
• Prefill:

• Different prompts have different length: how to batch?
• Decode

• Different prompts have different, unknown #generated tokens
• Memory

• New: KV cache size grows with b
• Solution: paged attention

largeb

Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe/Dynamo: Key Design and Implementations

● Systems and Models based on Disaggregation

13

LLM Decoding Timeline

14

Batching Requests to Improve GPU Performance

Issues with static batching:

● Requests may complete at different iterations

● Idle GPU cycles

● New requests cannot start immediately

15

Continuous Batching

Benefits:

● Higher GPU utilization

● New requests can start immediately

16Orca: A Distributed Serving System for Transformer-Based Generative Models. OSDI’22

Continuous Batching Step-by-Step

● Receives two new requests R1 and R2

17

Request Pool

(CPU)

Execution Engine

(GPU)

R1: optimizing ML
systems

R2: LLM serving is

Maximum serving batch
size = 3

Continuous Batching Step-by-Step

● Iteration 1: decode R1 and R2

18

R1: optimizing ML
systems

R2: LLM serving is

Iteration 1

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

Continuous Batching Step-by-Step

● Iteration 1: decode R1 and R2

19

R1: optimizing ML
systems

R2: LLM serving is

Iteration 1

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Continuous Batching Step-by-Step

● Receive a new request R3; finish decoding R1 and R2

20

R1: optimizing ML
systems requires

R2: LLM serving is
critical.

Iteration 1

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

Continuous Batching Step-by-Step

● Receive a new request R3; finish decoding R1 and R2

21

R1: optimizing ML
systems requires

R2: LLM serving is
critical.

Iteration 1

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Traditional Batching

● Receive a new request R3; finish decoding R1 and R2

22

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R4: A dog is

R5: How are

Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

23

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

24

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Execution Engine

(GPU)

Maximum serving batch
size = 3

Q:Howtobatchthese?

Traditional vs. Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

25

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

R2: LLM serving is
critical. <EOS>

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R3: A man

Continuous Batching

● Iteration 2: decode R1, R2, R3; receive R4, R5; R2 completes

26

R1: optimizing ML
systems requires ML

R2: LLM serving is
critical. <EOS>

Iteration 2

R3: A man

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R4: A dog is

R5: How are

Continuous Batching Step-by-Step

● Iteration 3: decode R1, R3, R4

27

Iteration 3

Request Pool

(CPU)

Execution Engine

(GPU)

Maximum serving batch
size = 3

R1: optimizing ML
systems requires ML

R3: A man is

R4: A dog is

R5: How are

28

Summary: Continuous Batching

● Handle early-finished and late-arrived requests more efficiently

● Improve GPU utilization

● Continuous Batching can improve the throughput by 10x compared to static

batching

Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe/Dynamo: Key Design and Implementations

● Systems and Models based on Disaggregation

29

LLM System Today Optimize Throughput

Motivation: Applications have Diverse SLO

TTFT TPOT
Time to first token Time per output token
Init ial response t ime Average time between two subsequent generated tokens

Human reading speed (P99 latency = 250ms)

Data output generation (P99 latency = 35ms)

Fast initial response

User can tolerate longer initial responseSummarization

Chatbot

High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

…

High Throughput
System

High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput = 3 rps

under SLO
criteria

can have
Low Goodput!

High Throughput
System

…

High Throughput ≠ High Goodput

= completed request / time

Throughput = 10 rps

= completed request within SLO / time

Goodput = 3 rps

under SLO
criteria

can have
Low Goodput!

High Throughput
System

…High Throughput can

still have Low Goodput
⇒ Poor UX

Recall: Continuous Batching

Prefill and Decode have Distinct Characteristics

Prefill

Decode

Compute-bound

Memory-bound

One prefill saturates compute.

Must batch a lot of requests together to saturate compute

wasted time

R1

R2

R2 arrivesRequest
arrival

Separate prefill / decode
R1 and R2 in separate GPUs

time

No Interference

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching Cause Interference

R1

R2
time

R2 arrivesRequest
arrival

Time wasted for decode

Time wasted for prefill

R1

R2

timeRequest
arrival R2 R3 R4

R3

R4

wasted time

Continuous Batching
Batch R1 and R2 together in 1 GPU

Continuous Batching
Batch R1~R4 together in 1 GPU

Continuous Batching Cause Interference

Higher cost

x1

add more GPU

x4

Colocation → Overprovision Resource to meet SLO

Poor UX Good UX

lower cost

Colocation → Coupled Parallelism

TTFT tight, TPOT loose

Prefill

Decode

PP TP DP

Prefill and Decode have
different preferences

Coupled Parallelism Strategy

Summary: Problems caused by Colocation

Continuous Batching Cause
Interference

Summary: Problems caused by Colocation

Continuous Batching Cause
Interference

Is there a better way to achieve

better

Goodput per GPU?

Coupled Parallelism Strategy

Solution: Disaggregating Prefill and Decode

Opportunity: Disaggregating Prefill and Decoding

● Prefill-Decoding interference is immediately eliminated

● Naturally divide the SLO satisfaction problem into two optimizations:

▪ Prefill instance optimizes for TTFT.

▪ Decoding instance optimizes for TPOT.

▪ Choose the most suitable parallelism and resource allocation for each phase.

44

Colocate
1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Disaggregation achieves better goodput

goodput

Colocate Disaggregate (2P1D)
2 GPU for Prefill + 1 GPU for Decode1 GPU for both Prefill and Decode

Simple Disaggregation

achieves 2x goodput

(per GPU)

Disaggregation achieves better goodput

goodput

Challenges of Disaggregation

● Communication overhead for KV-Cache transmission

● The optimization target — per-GPU goodput, is difficult to optimize:

○ The workload pattern

○ SLO requirements

○ Parallelism strategies

○ Resource allocation

○ Network bandwidth

48

Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe: Key Design and Implementations

● Systems and Models based on Disaggregation

49

Core Problems

P1 - Placement: Solve X, Y given workload requirement that maximizes GPU goodput

P2 - Communication: Minimize the communication of KV Cache between XP and YD

50

XPYD

DistServe Design Overview

Definition of Placement:

1. parallelism strategy for prefill/decoding instance

2. the number of each instance to deploy

3. how to place them onto the physical cluster

Featured algorithms:

1. Placement for High Node-Affinity Cluster

2. Placement for Low Node-Affinity Cluster

3. Online Scheduling Optimization

51

Placement for High Bandwidth Cluster

Assumption:

● Nodes are connected with high bandwidth network, e.g., InfiniBand.

Observation:

● We can optimize prefill and decoding instances separately.

Algorithm Sketch:

● Use simulation to measure the goodput for a specific parallelism config.

● Obtain the optimal parallelism config for each phase.
● Use replication to match the overall traffic.

52

Placement for Low Bandwidth Cluster

Assumption:

● GPUs inside one node are connected with NVLINK.

Observation:

● KV-Cache transmission only happens between the same layer

Algorithm Sketch:

● Similar to the previous one but constraint the same stage of prefill/decoding

instances to be on the same node.

53

Example Placement

54

How Expensive is Communication of KV Caches?

● Assume: 175B Model, A100 GPUs

● If using PCIe, latency of KV Cache transfer < time of a decode step.

● NVLink + DistServe algorithm will do better

55

Achieves 2.0x - 4.48x

compared to vanilla vLLM

● Chatbot: 2.0 - 3.4x

● Code Completion: 3.2x

● Summarization: 4.5x

Evaluation

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving
Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, Hao Zhang

Continuous batching vs. disaggregation

● It seems we are going back and forth

● Actually no:

○ Continuous batching: improve GPU utilization hence throughput

○ Disaggregation: to address goodput -- throughput s.t. SLOs

● Also, key insights of CB carries to disaggregation

○ Batch attentions and MLPs differently

○ Exit finished request and pick up new request asap

Disaggregation Fun History

● 2023 end: Published and open sourced at UCSD (Hao’s lab), with a concurrent work from

Microsoft (not open source)

● 2024: OSS integration is slower compared to CB/paged attention as no significant gain

was observed

● 2024: Yet, silently become the chosen architecture replacing continuous batching at large
scale in large cooperates (e.g., Bytedance, Google)

● 2025: Deepseek-v3 uses prefill-decode disaggregation combined with different

parallelisms for prefill and decoding instances.

58

Disaggregation Fun History

● 2025: Nvidia GTC Keynote

59

DistServe Architecture

60

Key Components (Delta from vLLM)

61

Key Function: Decode Instances Migrate KV Caches

62
On Optimizing the Communication of Model Parallelism. MLSYS’23

Agenda

● LLM Serving

● Continuous Batching

● Disaggregated prefill and decode

● DistServe/Dynamo: Key Design and Implementations

● Systems and Models based on Disaggregation

63

A Few New Models/Systems Build on DistServe

● LMCache/Cachegen

● DeepSeek-v3 Serving

● Nvidia Dynamo

64

LMCache/

65

KV

Storage

network transfer

w/ compression
KV

Storage

KV cache can also

be lossily stored
and retrieved

DeepSeek-V3: Disaggregation with Specialized Parallelisms

4 TP/SP + 8 DP
32EP in MoE

redundant experts

4 TP/SP + DP80
EP320

Nvidia Dynamo: Nvidia’s Implementation

Conclusion

● From continuous batching to disaggregation

● From Throughput to Goodput

● Disaggregation is effective to optimize goodput!

● Disaggregation achieves 2.0x - 4.48x

	Slide 1: Disaggregating prefill and decode for goodput-optimized LLM serving
	Slide 2: Agenda
	Slide 3: The era of Large Language Models (LLMs)
	Slide 4
	Slide 5: Inference process of LLMs
	Slide 6: Generative LLM Inference: Autoregressive Decoding
	Slide 7: Serving vs. Inference
	Slide 8: One of the Key Problem in LLM Serving
	Slide 9: Review: A Typical LLM’s Architecture
	Slide 10: Review: LLM Inference Compute Characteristics
	Slide 11: Review: LLM Inference Compute Characteristics
	Slide 12: Potential Bottleneck in Serving
	Slide 13: Agenda
	Slide 14: LLM Decoding Timeline
	Slide 15: Batching Requests to Improve GPU Performance
	Slide 16: Continuous Batching
	Slide 17: Continuous Batching Step-by-Step
	Slide 18: Continuous Batching Step-by-Step
	Slide 19: Continuous Batching Step-by-Step
	Slide 20: Continuous Batching Step-by-Step
	Slide 21: Continuous Batching Step-by-Step
	Slide 22: Traditional Batching
	Slide 23: Continuous Batching
	Slide 24: Continuous Batching
	Slide 25: Traditional vs. Continuous Batching
	Slide 26: Continuous Batching
	Slide 27: Continuous Batching Step-by-Step
	Slide 28: Summary: Continuous Batching
	Slide 29: Agenda
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Continuous Batching Cause Interference
	Slide 38: Continuous Batching Cause Interference
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Opportunity: Disaggregating Prefill and Decoding
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Challenges of Disaggregation
	Slide 49: Agenda
	Slide 50: Core Problems
	Slide 51: DistServe Design Overview
	Slide 52: Placement for High Bandwidth Cluster
	Slide 53: Placement for Low Bandwidth Cluster
	Slide 54: Example Placement
	Slide 55: How Expensive is Communication of KV Caches?
	Slide 56
	Slide 57: Continuous batching vs. disaggregation
	Slide 58: Disaggregation Fun History
	Slide 59: Disaggregation Fun History
	Slide 60: DistServe Architecture
	Slide 61: Key Components (Delta from vLLM)
	Slide 62: Key Function: Decode Instances Migrate KV Caches
	Slide 63: Agenda
	Slide 64: A Few New Models/Systems Build on DistServe
	Slide 65: LMCache/
	Slide 66: DeepSeek-V3: Disaggregation with Specialized Parallelisms
	Slide 67: Nvidia Dynamo: Nvidia’s Implementation
	Slide 68

