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The era of Large Language Models (LLMs)

Chat

Program

Search

…
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OPT-175B serving demo (Fall 2022)
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Serving LLMs is (surprisingly) slow and expensive

● A single A100 GPU can only serve < 1 request per second
○ Moderate size of model (13B parameters) and input

● A ton of GPUs are required for production-scale LLM services
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Repeat until 
● Reaches maximum length (e.g., 2048 tokens)
● Generate certain tokens (e.g., “<|end of sequence|>”)
● …
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Why is LLM inference inefficient?

… … … … … …

the future of

Artificial Intelligence is the future

Sequential dependency → Hard for GPU parallelization 10



Batching?

… … … … … …

the future of

Artificial Intelligence is the future

Alan Turing is

a computer scientist

a computer

Better utilize 
parallel hardware
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Attention KV cache
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Attention KV cache size
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KV Cache is huge: 
● Each token: ~1 MB. 
● One full request: ~several GBs.
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KV cache management in previous systems

● Pre-allocates contiguous memory to the request’s maximum length
○ Convention in previous deep learning workloads with static input/output shapes

Artificial Intelligence is <resv> <resv> … <resv> <resv>

3 KV Cache slots for 
request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

● Results in memory fragmentation
○ Internal fragmentation due to the unknown output length.
○ External fragmentation due to non-uniform per-request max lengths.

… … Alan Turing …

Request BExternal frag.
(Internal frag.)
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Significant memory waste in KV cache space

Only 20–40% of KV Cache space is utilized to store actual token states

Yu et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).
15



PagedAttention

Page 0
Page 1
Page 2
Page 3
Page 4

Process
A

Process
B

Physical Memory

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4

Request
A

Request
B

KV Cache

Memory management in OS PagedAttention

Application-level memory paging and virtualization 
for attention KV Cache
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Paging KV cache space into KV blocks

Artificial Intelli-
gence is the

Artificial Intelli-
gence is the

block 0

block 1

block 2

block 3

block 4

block 5

Block size = 4

Contiguous KV Cache

KV Blocks

KV block: a fixed-size block of 
memory that stores KV cache 
from left to right
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Virtualizing KV Cache

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table
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Attention mechanism with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention operation on the fly

5-10% slowdown in GPU kernel latency 
due to memory indirection
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Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Memory management with PagedAttention
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A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”
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Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 3

– –

– –

Block table

Completion: “and”
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Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”
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Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand
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Memory efficiency of PagedAttention

● Minimal internal fragmentation
○ Only happens at the last block of a sequence
○ # wasted tokens/seq < block size

■ Sequence: ~1000 tokens
■ Block size: ~10 tokens

● No external fragmentation

Alan Turing is a

computer scientist and mathemati
cian

renowned

Internal fragmentation

2.5-5x improvement
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Paging enables sharing

The future of cloud computing 
is likely to be characterized by 
several key trends

LLM

Prompt

that will shape the industry and 
its impact on businesses and 
individuals…

each playing a pivotal role in 
reshaping how businesses 
leverage technology…

which will not only transform the 
way organizations operate but 
also empowering them…

Multiple outputs

Shared btw. sequences

Example: Parallel sampling
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Sharing KV blocks

Logical KV blocks

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends
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Sharing KV blocks

Logical KV blocks

key trends each

The future of cloud

key trends that

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends that

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends each

Copy-on-Write

All prompt blocks (except the last)
are shared across samples
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More complex sharing: beam search

Alan Turing is a

famous

British

Prompt

computer

mathemat
ician

Beam 0

Beam 2

scientist

and

who

computer

created

scientist

ledBeam 1

Shared btw. two beams

Shared btw. three beams

● Similar to process tree (fork & kill)
● Efficiently supported by paged attention and copy-on-write mechanism
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Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing)
OPT-13B on 1x A100-40G with ShareGPT dataset
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How does PagedAttention benefit LLM Serving?

31

Reduce memory 
fragmentation with 

paging

Further reduce 
memory usage with 

sharing



Out of KV block memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned

Alan Turing is a

Physical KV blocks

Request
A

Request
B

Full
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Out of KV block memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned for

Alan Turing is a

Physical KV blocks

Request
A

Request
B

be

Cannot allocate a 
new physical block 
for Request B
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Request preemption & recovery

Swap to 
CPU

Swap back 
to GPU

Option 1: Swapping

Recompute

Delete

Option 2: Recomputation

Goal: Free some requests’ KV cache to let others run first. 

34



Notes on preemption & recovery

Swap/recompute the whole request, since all 
previous tokens are required every step.

Swapping: smaller block sizes → higher 
overhead due to small data transfers.

Recomputation: surprisingly fast since all 
token’s KV cache can be computed in parallel. Figure: Swap/Recomputation 

latency of 256 tokens.

Our strategy: Use recomputation when possible with FCFS policy

35



Comparison with operating system virtual memory

Analogies Differences

OS pages ↔ KV blocks
● Reduce memory fragmentation

Single-level block table
● Block table is tiny compared to 

the actual data.
Shared pages across processes  
↔ Shared KV blocks across samples
● Reduce memory waste via 

sharing

Preemption & Recovery
● Request-level preemption
● Recomputation-based recovery

36



Throughput – greedy decoding

OPT-13B on 1xA100 40G with ShareGPT trace. 

Average number of batched requests.

2.4x speedup
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Throughput – beam search

Beam width = 2
2.4x speedup

Beam width = 4
3.2x speedup

Beam width = 6
3.5x speedup

No beam search
1.8x speedup

OPT-13B on 1xA100 40G with Alpaca trace.
Speedup: vLLM v.s. Orca(Pow2) 
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PagedAttention has become the industrial standard

39
TensorRT-LLM HuggingFace TGI Fireworks AI

…
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vLLM's Goal

Build the fastest and

easiest-to-use open-source

LLM inference & serving engine

41



vLLM Today
https://github.com/vllm-project/vllm

$ pip install vllm

43K Stars

Official
release!

42

https://github.com/vllm-project/vllm


● 600+ PRs a month
● 890+ contributors
● 30+ major contributors from UCB, RedHat, Anyscale, 

Roblox, Meta, etc.

vLLM Community

43



vLLM API (1): LLM class

from vllm import LLM

# Example prompts.
prompts = ["Hello, my name is", "The capital of France is"]
# Create an LLM with HF model name.
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B")
# Generate texts from the prompts. 
outputs = llm.generate(prompts)

A Python interface for offline batched inference

44



vLLM API (2): OpenAI-compatible server

$ vllm serve meta-llama/Meta-Llama-3.1-8B

$ curl http://localhost:8000/v1/completions \

    -H "Content-Type: application/json" \

    -d '{

        "model": "meta-llama/Meta-Llama-3.1-8B",

        "prompt": "San Francisco is a",

        "max_tokens": 7,

        "temperature": 0

    }'

A FastAPI-based server for online serving

Server

Client

45
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Broad Model Support

48

● Transformer-like LLMs (e.g., Llama)

● Mixture-of-Expert LLMs (e.g., DeepSeek)

● Multi-modal LLMs (e.g., Qwen-VL)

● State-Space Models (e.g., Mamba)

● Embedding Models (e.g. E5-Mistral)



Easy Model Integration

49

● vLLM is based on PyTorch and HuggingFace Transformers

● vLLM requires minimal changes to the model code

class LlamaAttention(nn.Module):

def __init__(self, ...):
    self.qkv_proj = nn.Linear(...)
    self.attn = Attention(...)
    ...

def forward(self, x):
    qkv = self.qkv_proj(x)
    q, k, v = qkv.split(...)
    attn_output = self.attn(q, k, v)
    ...

class LlamaAttention(nn.Module):

def __init__(self, ...):
    self.qkv_proj = ColParallelLinear(...)
    self.attn = PagedAttention(...)
    ...

def forward(self, x):
    qkv = self.qkv_proj(x)
    q, k, v = qkv.split(...)
    attn_output = self.attn(q, k, v)
    ...

Original model
(HuggingFace)

vLLM



First-class Support for Multi-modal Models

50

@MULTIMODAL_REGISTRY.register_image_input_mapper(image_input_mapper)
@MULTIMODAL_REGISTRY.register_input_mapper("video", video_input_mapper)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_image_tokens)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("video",
                                                    get_max_video_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_qwen2_vl)
@INPUT_REGISTRY.register_input_processor(input_processor_for_qwen2_vl)
class Qwen2VL(nn.Module, SupportsMultiModal):

   def __init__(self,
                config: Qwen2VLConfig,
                multimodal_config: MultiModalConfig):
       super().__init__()
       ...

vLLM provides a structured way to register models with various modalities 
(e.g., image, video, and audio)



Hybrid Attention Models

● Various attention variants to efficiently support long context:
○ Multi-head Latent Attention (DeepSeek)
○ Sliding window attention
○ Local chunked attention
○ State-space models (Mamba)

● Importantly, all of the above can be mixed in a single model
○ Gemma 3: Global attention + sliding window attention
○ Llama 4: Global attention + local chunked attention
○ Jamba: Global attention + Mamba

51



Hybrid memory allocator

● We are building a two-layer memory allocator/evictor 
to manage the heterogeneous memory:

Shared page allocator

self-attn
allocator

mamba
allocator

Customized pages for the request

● Jenga: Effective Memory Management for Serving LLM 
with Heterogeneity

52
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Manual CUDA kernels v.s. torch.compile

● vLLM once maintained a large set of CUDA kernels, with different 
kernel fusion and quantization. 

● The modifications to the model code because of these kernels make 
the model code less readable and harder to maintain.

Modularity

Maintenance
Performance

torch.compile

53
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Why do we need parallelism?

● Models are getting much bigger than a single GPU
○ Deepseek V3: 671B parameters → ~700GB in FP8
○ NVIDIA H100: 80GB HBM
○ Memory is not only used for parameters, 

activations and KV cache also takes memory
● Use more GPUs to multiple the compute power 

○ Reduce serving latency 
○ Increase serving throughput

55



Things to consider for parallelism

● Theoretically, all tensors can be arbitrarily distributed and 
all dimensions of all tensors can be sharded.

● Goal 1: Minimize communication
○ Limit the number of bytes transferred
○ Hide the overhead via overlapping with computation
○ Network is also heterogeneous 

■ Latest NVLink: 1.4TB/s
■ Infiniband: 50GB/s

● Goal 2: Minimize waiting from data dependency and 
stragglers’ effect 
○ A system is often bottlenecked by the slowest 

component

56



Data parallelism (mostly outside of vLLM)

● Replicated engines
● A load-balancer routes different 

requests to different engines based on
○ Engine load
○ KV cache memory usage
○ (Prefix) Caching

👍 No communication between engines
👎 No parameter memory saving, which 

can limit the KV cache size, and thus 
serving throughput

👎 No reduction in latency

Engine 1

Engine 2

Requests
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Tensor parallelism (in vLLM)

● Partition the weights in the linear 
layers

👍 Reduce the serving latency if the 
network is fast

👍 KV Cache can also be partitioned
👎 Heavy communication across TP 

shards. Often require NVLink to 
work effectively.

Image source: https://www.titanml.co/resources/harmonizing-multi-gpus-efficient-scaling-of-llm-inference  
58

https://www.titanml.co/resources/harmonizing-multi-gpus-efficient-scaling-of-llm-inference


Expert parallelism (in vLLM)

● Mixture of Expert: A set of linear 
layers (experts) where each token 
only pick a subset to run on

● Distribute different experts to 
different nodes

👍 Friendly for GPU kernels
👍 Smaller communication than TP
👎 Only apply for MoE layers. 

Attention needs DP.
👎 Different experts have different 

loads, which needs to be balanced

Image source: https://research.google/blog/mixture-of-experts-with-expert-choice-routing/ 
59
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Sequence and context parallelism  (not in vLLM yet)

● Extension of DP to subsequences of a 
single long sequence

● Communicate Qs or KVs across 
different shards

👍 Parallelize the sequence dimension 
for very long sequences. Balance the 
KV Cache across shards

👎 No parameter memory saving
👎 For sampling one request, only one 

GPU will be running. Require 
balancing requests loads.

Image source: https://coconut-mode.com/posts/ring-attention/ 
60
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Pipeline parallelism  (in vLLM)

● Distribute the layers to different 
GPUs and pipeline the execution 
across devices

👍 Lowest communication overhead
👎 Increased latency
👎 Throughput bottlenecked by the 

slowest stage
Device 1

Device 2

Device N-1

Device N

Layer 1

Layer 2

Layer N-1

Layer N

… 

Output

Input
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Communication kernel

● Communication kernels have different requirements in inference:

GPU
0

GPU
1

GPU
3

GPU
2

Ring All Reduce
(NCCL)

GPU
0

GPU
1

GPU
3

GPU
2

One-shot All Reduce
(Ours)

Optimized for large tensors Optimized for small tensors
62



Prefill-Decode Disaggregation

● Different parallelization strategies have different 
characteristics in computation/memory/communication 
requirements

● Different stages of LLM inference have different 
characteristics as well:
○ Prefill: typically compute bound
○ Decode: typically memory bound and require large KV 

cache memory
● Disaggregation: Have different setups for prefill and 

decode. Transfer the KV cache between them.
● Side benefit: Separate concern on 

time-to-first-token/time-per-output-token
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Inference Optimizations

● Optimizing the the model:
○ Quantization

● Optimizing “prefill”:
○ Prefix caching, CPU KV cache offloading, etc.

● Optimizing “decode”:
○ Speculative decoding, Jump decoding, etc.
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Quantization

● Use reduced precisions to store & compute the model
○ BFloat 16 & Float 16 are the standard for “unquantized” models
○ Quantization typically means using 8 or lower bits (e.g., FP8, INT8, FP4)

● Native hardware support makes quantization increasingly effective 
(e.g., FP8 in Hopper & FP4 in Blackwell)

66



LLM Quantization

● LLMs have 3 axes to quantize
○ Size: Weights >= KV cache >>> Activation

1. Weight quantization (e.g., FP8, INT8, GPTQ, AWQ)
● Main benefits: Reduced storage & memory footprints

2. KV cache quantization (e.g., FP8)
● Main benefits: Reduced KV cache storage & Faster attention

3. Activation quantization (e.g., FP8, INT8)
● Main benefits: Faster GeMM & communication (in distributed inference)
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Quantization support in vLLM

● LLM Compressor library for 
quantizing the model weights

● vLLM provides highly-tuned 
GPU kernels for quantized 
ops

LLM Compressor

68



Automatic Prefix Caching

69

Example 1: Shared system prompt

Request A

A chat between a curious user and an 
artificial intelligence assistant. The 
assistant gives helpful, detailed, and 
polite answers to the user's questions. 
User: Hello!

Request B

A chat between a curious user and an 
artificial intelligence assistant. The 
assistant gives helpful, detailed, and 
polite answers to the user's questions. 
User: How are you?

Shared



Automatic Prefix Caching

70

Example 2: Multi-round conversation
Prompt (round 1)
Human: What's AI?

LLM Result (round 1)
LLM: AI is technology that 
simulates human intelligence, 
like Siri or Google Maps.

Prompt (round 2)
Human: What's AI?
LLM: AI is technology that 
simulates human intelligence, 
like Siri or Google Maps.
Human: Cool, thanks!

LLM Result (round 2)
LLM: No problem!

Shared



Hash-Based Automatic Prefix Caching

71

Request 
KV Blocks:

Block A
[A chat]

Block B
[between a]

Block C
[curious user]

Request: A chat between a curious user …

…

Hash(“A chat”)

Hash(“A chat
      between a”)

Hash(“A chat between 
      a curious user”)

Block A
[A chat]

Block B
[between a]

Block D
[cute puppy]

A chat between a cute puppy …

…

Hash(“A chat”)

Hash(“A chat
      between a”)

Hash(“A chat between 
      a cute puppy”)

reuse

reuse



Speculative Decoding

Small Model
(#parameter: N)

<s>

① Several

Several

② famous

famous

③ songs

songs

④ are

Autoregressive (sequential) Non-autoregressive (parallel) 

Large Model
(#parameter: 10xN)

<s> Several famous songs are

⑤ composedSeveral famous songs areDraft

Verification

Small model writes a draft → Large model verifies it

Much faster: verifying 5 tokens takes similar time as generating 1 token

72
Image source: Speculative Decoding with Big Little Decoder

https://arxiv.org/abs/2302.07863


“Jump” the token generation using the predefined JSON schema

Jump Decoding

JSON schema
for Structured Outputs 

{
    “name”: str,
    “description”: str,
    “price”: float,
    . . .
}

{
    “name”: “. . .” ,
    “description”: 

Without Optimization

4 tokens
in 4 steps

{
    “name”: “. . .”,
    “description”: 

With Jump Decoding
Triggers 
“Jump”

4 tokens
in 1 step

Reference: Fast JSON Decoding for Local LLMs with Compressed Finite State Machine

https://lmsys.org/blog/2024-02-05-compressed-fsm/


Unified representation for scheduling

74

Step 0

o1 o1Step 1

o2 o2Step 2

R1 R2

R3
Token budget (10)

o3 o3 o1Step 3

{R1: 3, R2: 5, R3: 2}

{R1: 1, R2: 1, R3: 8}

{R1: 1, R2: 1, R3: 2}

{R1: 1, R2: 1, R3: 1}

Scheduler Output
{request: num_tokens}

● The scheduling decision is simply represented as a 
dictionary of {request_id: num_tokens}

● “token budget” to control the per-step execution time

Prompts



● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and 

len(all_token_ids) 

Unified representation for scheduling (cont’d)

75

● Ex1) “Prefill” & “Decode”

AI is the future of

num_computed_tokens: 0

all_token_ids

Schedule 5 tokens (“prefill”)

AI is the future of tech

num_computed_tokens: 5

all_token_ids

Schedule 1 token (“decode”)



● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and 

len(all_token_ids) 

76

● Ex2) Chunked prefills

AI is the future of

num_computed_tokens: 0

all_token_ids

Schedule 3 tokens out of 5

AI is the future of

num_computed_tokens: 3

all_token_ids

Schedule 2 tokens

Unified representation for scheduling (cont’d)



● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and 

len(all_token_ids) 
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● Ex3) Prefix caching

AI is the future of

num_computed_tokens: 2

all_token_ids

Schedule 3 tokensCache hit!

Unified representation for scheduling (cont’d)



Let’s combine them all together!
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Without optimizations Optimizations Combined



Key Focuses in vLLM
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Models

Parallelism

Inference optimizations

Performance engineering



Performance Engineering

● The biggest lesson we’ve learned in vLLM

“To fully utilize the GPU, we need to pay close attention to everything 
happening on the CPU (i.e., CPU overheads)”

● Ex) If you build an inference engine in PyTorch without caring much 
about CPU overheads, you will likely get 10-20% GPU utilization
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CPU Overheads

● CPU overheads in an old version of vLLM

CPU time (29%): scheduling requests, preparing 
LLM inputs, organizing LLM outputs.

API server (33%) Model Exec (38%)

● Why so much overheads?
○ Python is slow
○ We didn’t utilize multiple threads/processes efficiently in Python
○ PyTorch has performance pitfalls
○ Continuous batching makes input preparation complicated
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Optimized Engine Loop & API Server
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Goal: Make sure GPU is not stalled

● By pre-processing
○ E.g., converting JPEG images into input tensors (resizing, cropping, …)

● By post-processing
○ E.g., de-tokenizing output token IDs into output strings

● By HTTP request handling
○ E.g., streaming outputs to 100s of concurrent users



Optimized Engine Loop & API Server (cont’d)
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● Two-process approach
○ Process 0 (Frontend): Pre-/post-processing & API Server

■ Importantly, de-tokenization happens in Process 0
○ Process 1 (EngineCore): Schedule & execute the model every step

■ A busy loop that is NOT blocked by Process 0



● In V0, input tensors are re-created from scratch at every step
● In V1, input tensors are cached, and we only apply the diff at each step

○ Typically, the diff is minimal because only a few requests join or finish at each step
○ The gain is larger for larger objects like block table

Incremental Input Preparation (Persistent Batch)
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0.8 1.0 0.9 0.5 0.7temperature

max_num_reqs

R0 R1 R2 R3 R4

0.8 0.6 0.9 0.5 0.7 0.8temperature

R0 R5 R2 R3 R4 R6

R1 finish
R5, R6 join

https://github.com/InternLM/lmdeploy


CUDA Graph for Low Latency 

Time

CPU

GPU

torch.nn.Linear

matmul
kernel

torch.nn.GELU torch.nn.Linear

matmul
kernel

gelu
kernel

Python/PyTorch overhead

Idle Idle

CPU

GPU matmul
kernel

matmul
kernel

gelu
kernel

Time85

Python/PyTorch overhead takes up to 50% of overall latency

CUDA Graph



Piecewise CUDA Graphs
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Q K V

Attention

O

MLP 0

MLP 1

Q K V ● V0: Single CUDA graph for the entire model

● Pros: Minimal CPU overheads in model 
execution

● Cons: Limited flexibility
○ Static shapes are required
○ No CPU operations are allowed

→ Increased development burden



Piecewise CUDA Graphs (cont’d)
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Q K V

Attention

O

MLP 0

MLP 1

Q K V

CUDA graph N

CUDA graph N-1

PyTorch Eager

Graph split using 
torch.compile



Piecewise CUDA Graphs (cont’d)
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Q K V

Attention

O

MLP 0

MLP 1

Q K V ● V1: Splits the model into pieces
○ Runs the attention op in eager-mode PyTorch
○ Runs other ops with CUDA graphs

■ Easy to capture, since the ops are token-wise

● Pros: Maximum freedom in implementing 
the attention op

○ No restriction on shapes
○ Any CPU operations are allowed

● Cons: CPU overheads unhidden by CUDA 
graphs could slow down the model execution

○ Negligible for 8B+ models on H100



Q & A
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