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The era of Large Language Models (LLMs)
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OPT-175B serving demo (Fall 2022)

11 Shubham Saboo }; Retweeted
-.w Charly Wargnier @DataChaz - Aug 11
@- Introducing OPT-175B, a free version of GPT-3! 3

No login, no credit card needed!
opt.alpa.ai

via @Saboo_Shubham_ #ai #ml #nlp

Free, Unlimited OPT-175B Text Generation

Warning: This model might ger No safety in place as a free service.
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Question: If xis 2 and y is 5, what is x + 2y?
Answer:x +2y=2+2(6)=2+10=12

Question: If xis 8 and y is 9, what is 3x +y?
Answer: 3x+y=3(8) +9=24+9=33

Question: If xis 7 and y is 6, whatis x + 4y?
Answer:

@
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Serving LLMs is (surprisingly) slow and expensive

e A single A100 GPU can only serve < 1 request per second
o Moderate size of model (13B parameters) and input

e A ton of GPUs are required for production-scale LLM services

WATCH Q)

TECH

Microsoft warns of service
disruptions if it can’t get enough
A.l. chips for its data centers

PUBLISHED FRI, JUL 28 2023.11:03 AM EDT
UPDATED FRI, JUL 28 2023.12:47 PM EDT
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LLM inference process
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Transformer layers
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LLM inference process

Layer N Layer N Layer N

Layer N-1 Layer N-1 Layer N-1

Layer 1 Layer 1 Layer 1

Transformer layers

]

Repeat until
e Reaches maximum length (e.g., 2048 tokens)

e Generate certain tokens (e.g., “</end of sequence[>”)
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Why is LLM inference inefficient?

the future of

Artificial Intelligence is the future

Sequential dependency — Hard for GPU parallelization
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Batching?

Better utilize the future of
parallel hardware

a computer scientist
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{ Artificial Intelligence is e the - future

Alan Turing is a computer
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Transformer layer i

Attention KV cache
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Attention KV cache size
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Artific KV Cache is huge: re

e Each token: ~1 MB.
e One full request: ~several GBs.

13



KV cache management in previous systems

0 3 A’s max length

- -
Y Y Y Y
3 KV Cache slots for  Pre-allocated slots for A’s output  External frag. Request B
request A’s prompt (Internal frag.)

e Pre-allocates contiguous memory to the request’s maximum length
o Convention in previous deep learning workloads with static input/output shapes

e Results in memory fragmentation
o Internal fragmentation due to the unknown output length.
o External fragmentation due to non-uniform per-request max lengths.
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Significant memory waste in KV cache space

Only 20-40% of KV Cache space is utilized to store actual token states

B KV Cache " Internal frag. I External frag. & Others

100 A

80 1

60 -

40 A

20 A

KV Cache space usage (%)

Orca Orca Orca OLIJFS
(Max) (Pow?2) (Oracle)

Yu et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).
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Memory management in OS

Process
A

PagedAttention

Application-level memory paging and virtualization

Page O
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Page 4

Physical Memory

for attention KV Cache
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Request
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PagedAttention

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4

KV Cache

Request
B
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Paging KV cache space into KV blocks

Contiguous KV Cache

Artificial Intelli- is the
gence

KV Blocks

_‘ block 0
block 1

> block 2

KV block: a fixed-size block of block 3

memory that stores KV cache block 4 | artificial] el | e

from left to right —
block 5
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Block size = 4



Virtualizing KV Cache

Physical KV blocks

Refklest block 0

block 1| computer | scientist

Prompt: “Alan Turing is a computer scientist”

block 2
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Attention mechanism with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention operation on the fly

KV Cache

mathe-

Block 1 |computer| scientist and i
matician

Block table

Physical
block number

5 4
0 4

# Filled

Block 2 |renowned for

\ 4

Query for

5-10% slowdown in GPU kernel latency
due to memory indirection

is a




Memory management with PagedAttention
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Memory management with PagedAttention
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Memory management with PagedAttention

Physical KV blocks
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Memory management with PagedAttention

Physical KV blocks

Request block 0
A
block 1| computer | scientist| and UEUIEIC
atician
Prompt: “Alan Turing is a computer scientist”
Completion: “and mathematician” block 2
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Memory management with PagedAttention

Physical KV blocks

Request block 0
A
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Memory efficiency of PagedAttention

e Minimal internal fragmentation

o Only happens at the last block of a sequence Alan Turing 'S @

o # wasted tokens/seq < block size computer | scientist and matcri]:rr]nati
m Sequence: ~1000 tokens I
m Block size: ~10 tokens C y

. Y
e No external fragmentation Internal fragmentation

M KV Cache Internal frag. M External frag. & Others

2.5-5x improvement

KV Cache space usage (%)

Orca Orca Orca Ours 25
(Max) (Pow?2) (Oracle)



Paging enables sharing

Example: Parallel sampling (’rhqf will shape the industry and )
its impact on businesses and
individuals...

\ J
The future of cloud computing feach playing a pivotal role in
is likely to be characterized by LLM reshaping how businesses
several key trends \Ieverage technology... )

Shared btw. sequences

N
which will not only transform the
way organizations operate but
Prompt also empowering them...

J

Multiple outputs
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Sharing KV blocks

Physical KV blocks

Sample ‘ key | trends | each Sample
A / B
The future of cloud

Logical KV blocks  COPy-on-Write Logical KV blocks

The future of cloud The future of cloud
/ key trends | that
S S comPUtl o ikely | to

ing

charac-
be . b several

erized | All prompt blocks (except the last) Y
key | trends are shared across samples each
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More complex sharing: beam search

created

Shared btw. three beams
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Beam Search Width

Percentage = (#blocks saved by sharing) / (#total blocks without sharing)
OPT-13B on 1x A100-40G with ShareGPT dataset
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How does PagedAttention benefit LLM Serving?

Reduce memory Further reduce
fragmentation with memory usage with
paging sharing

31



Out of KV block memory

Request
A

Request
B

Physical KV blocks

The future of cloud
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Out of KV block memory

Cannot allocate a
new physical block
for Request B

The future of cloud
Request
A mathe-

computer | scientist and
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Request preemption & recovery

Goal: Free some requests’ KV cache to let others run first.

Option 1: Swapping Option 2: Recomputation
]
CPU —_—

0 Swap back 0
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Notes on preemption & recovery

Swap/recompute the whole request, since all
previous tokens are required every step.

Swapping: smaller block sizes — higher
overhead due to small data transfers.

Recomputation: surprisingly fast since all
token’s KV cache can be computed in parallel.

140 A —e— Recompute
120 - Swap in

—e— Swap out
—e— Swap in + out

1 2 4 8 16 32 64 128 256
Block size

Figure: Swap/Recomputation
latency of 256 tokens.

Our strategy: Use recomputation when possible with FCFS policy
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Comparison with operating system virtual memory

Analogies Differences

OS pages <« KV blocks Single-level block table
e Reduce memory fragmentation e Block table is tiny compared to
the actual data.
Shared pages across processes
< Shared KV blocks across samples
e Reduce memory waste via
sharing

Preemption & Recovery
e Request-level preemption
e Recomputation-based recovery

36



Throughput - greedy decoding
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PagedAttention has become the industrial standard

NVIDIA TensorRT-LLM Superc X +

dev.. Q & O % # O @

Technical Blog 2 Subscribe

requiring deep knowledge of C++ or NVIDIA CUDA.

TensorRT-LLM improves ease of use and extensibility through
an open-source modular Python API for defining, optimizing,
and executing new architectures and enhancements as LLMs

evolve, and can be customized easily.

For example, MosaicML has added specific features that it
needs on top of TensorRT-LLM seamlessly and integrated them
into their inference serving. Naveen Rao, vice president of
engineering at Databricks notes that “it has been an absolute

breeze.”

“TensorRT-LLM is easy to use, feature-packed with streaming
of tokens, in-flight batching, paged-attention, quantization,
and more, and is efficient,” Rao said. “It delivers state-of-the-
art performance for LLM serving using NVIDIA GPUs and allows

us to pass on the cost savings to our customers.”

Performance comparison

Summarizing articles is just one of the many applications of

TensorRT-LLM

O huggingface/text-generation X <+
C ah. Q@O %~ ®=0g

README.md

Serve the most popular Large Language Models with a
simple launcher

Tensor Parallelism for faster inference on multiple
GPUs

Token streaming using Server-Sent Events (SSE)

s for

increased total throughput

Optimized transformers code for inference using

EllelPaged AttentionfeliRU RS FeleloVETS
architectures

Quantization with | and
weight loading
Watermarking with

Logits warper (temperature scaling, top-p, top-k,
repetition penalty, more details see
: )
Stop sequences
Log probabilities
Production ready (distributed tracing with Open

Tl oo Do odb oo oo iio )

HuggingFace TGl

ow Fireworks.ai: Fast, Affordable.

) ps://blo... & (O

[ ]]] Q v

developers to integrate new Al building blocks into

new and innovative products.

Fast, Affordable LLM Inference with Fireworks

Efficient Inference

Efficient inference of LLMs is an active area of research,
but we are industry veterans from the PyTorch team
specializing in performance optimization. We use model
optimizations including multi/group query attention
optimizations, sharding, quantization, kernel
optimizations, CUDA graphs, and custom cross-GPU
communication primitives. At the service level, we
employ continuous batching, paged attention, prefill
disaggregation, and pipelining to maximize throughput
and reduce latency. We carefully tune deployment
parameters including the level of parallelism and

hardware choice for each model.

Y 120 Q N

Fireworks Al
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Contents

e VLLM: A real-world open-source LLM serving system
o Models
o Parallelism
o Inference optimizations

40



LLM's Goal

Build the fastest and
easlest-to-use open-source

LLM inference & serving engine

41



/LLM Today

O https://github.com/vllm-project/vllm

P $ pip install vllm

43K Stars

[ Star History

H0.0k
® vllm-project/vilm

30.0k

Official
release!

GitHub Stars
N
o
o
=

10.0k

July October 2024 April July October 2025
Date % star-history.com
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https://github.com/vllm-project/vllm

vLLM Community

Pull Request History

New /PRs s - 8 @« et Total / PRs
700 6.5 k
6 k
600
5k
500
4k
400
3k
300
200 2k
100 Tk
0 - (0]
Jul Oct 2024 Apr Jul Oct 2025 Apr

600+ PRs a month
890+ contributors
30+ major contributors from UCB, RedHat, Anyscale,
Roblox, Metaq, etc.



vLLM API (1): LLM class

[A Python interface for offline batched inference

from vllm import LLM

prompts = ["Hello, my name is", "The capital of France is"]

1lm = LLM(model="meta-1lama/Meta-Llama-3.1-8B")

outputs = llm.generate(prompts) Z;7

44



vLLM API (2): OpenAl-compatible server

A FastAPI-based server for online serving

\_

Server ]
$ vllm serve meta-llama/Meta-Llama-3.1-8B

| Client |

$ curl http://localhost:8000/vl/completions \
-H "Content-Type: application/json" \
-d '{
"model"”: "meta-llama/Meta-Llama-3.1-8B",
"prompt"”: "San Francisco is a",
"max_tokens": 7,
"temperature": ©

}
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Key Focuses in vLLM

Models

Parallelism

Inference optimizations

N N YN Y

Performance engineering

I N N N
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Key Focuses in vLLM

Models

47



Broad Model Support

Transformer-like LLMs (e.g., Liama)
Mixture-of-Expert LLMs (e.g., DeepSeek)
Multi-modal LLMs (e.g., Qwen-VL)
State-Space Models (e.g., Mamba)
Embedding Models (e.g. E5S-Mistral)

48



Easy Model Integration

e VLLM is based on PyTorch and HuggingFace Transformers

e VLLM requires minimal changes to the model code

class LlamaAttention(nn.Module):

def __init_ (self, ...):
self.gkv_proj = nn.Linear(...)
self.attn = Attention(...)

def forward(self, x):
gkv = self.gkv_proj(x)

g, k, v = gkv.split(...)

attn_output = self.attn(q, k, V)Z:;;7

Original model
(HuggingFace)

-

class LlamaAttention(nn.Module):

def __init_ (self, ...):

self.gkv_proj = ColParallellinear(...)

self.attn = PagedAttention(...)

def forward(self, x):
gkv = self.gkv_proj(x)
g, k, v = gkv.split(...)
attn_output = self.attn(q, k, v)

4

VLLM
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First-class Support for Multi-modal Models

vLLM provides a structured way to register models with various modalities

(e.g., image, video, and audio)

@MULTIMODAL_REGISTRY.register image input mapper(image_input_mapper)
@MULTIMODAL_REGISTRY.register input mapper("video", video_input_mapper)
@MULTIMODAL_REGISTRY.register max_ image tokens(get_max_image_tokens)
@MULTIMODAL_REGISTRY.register max multimodal tokens("video",

@INPUT_REGISTRY.register dummy data(dummy_data_for_qwen2_vl)
@INPUT_REGISTRY.register input processor(input_processor_for_qwen2_vl)
class Qwen2VL(nn.Module, SupportsMultiModal):

def __init__ (self,
config: Qwen2VLConfig,
multimodal_config: MultiModalConfig):
super(). init_ ()

get_max_video_tokens)

4
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Hybrid Attention Models

Various attention variants to efficiently support long context:

Multi-head Latent Attention (DeepSeek)
Sliding window attention

Local chunked attention

o State-space models (Mamba)

Importantly, all of the above can be mixed in a single model
o Gemma 3: Global attention + sliding window attention
o Llama 4: Global attention + local chunked attention
o Jamba: Global attention + Mamba

o O O
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Hybrid memory allocator

e We are building a two-layer memory allocator/evictor
to manage the heterogeneous memory:

Shared page allocator

™~
/ .
self-attn mamba
allocator allocator

l l
HiRmninn

Customized pages for the request

e Jenga: Effective Memory Management for Serving LLM
with Heterogeneity



https://arxiv.org/abs/2503.18292
https://arxiv.org/abs/2503.18292

Manual CUDA kernels v.s. torch.compile

vLLM once maintained a large set of CUDA kernels, with different
kernel fusion and quantization.

The modifications to the model code because of these kernels make
the model code less readable and harder to maintain.

Modularity torch.compile

T —  Performance

Maintenance
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Key Focuses in vLLM

Parallelism
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Why do we need parallelism?

Models are getting much bigger than a single GPU
o Deepseek V3: 671B parameters — ~700GB in FP8
o NVIDIA H100: 80GB HBM
o Memory is not only used for parameters,
activations and KV cache also takes memory
Use more GPUs to multiple the compute power
o Reduce serving latency
o Increase serving throughput
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Things to consider for parallelism

Theoretically, all tensors can be arbitrarily distributed and
all dimensions of all tensors can be sharded.
Goal 1: Minimize communication
o Limit the number of bytes transferred
o Hide the overhead via overlapping with computation
o Network is also heterogeneous
m Latest NVLink: 1.4TB/s
m Infiniband: 50GB/s
Goal 2: Minimize waiting from data dependency and
stragglers’ effect
o A system is often bottlenecked by the slowest
component

56



FAYRS

Data parallelism (mostly outside of vLLM)

Replicated engines
A load-balancer routes different

requests to different engines based on _
o Engine load Engine 1
o KV cgche me.mory usage Requests
o (Prefix) Caching
No communication between engines Engine 2 }

No parameter memory saving, which
can limit the KV cache size, and thus
serving throughput

No reduction in latency

57



= 1 I S

Tensor parallelism (in vLLM)

Partition the weights in the linear
layers

Reduce the serving latency if the
network is fast

KV Cache can also be partitioned
Heavy communication across TP
shards. Often require NVLink to
work effectively.

e w0

e source: https://www.titanml.co/resources/harmonizing-multi-gpus-efficient-scaling-o

w1

o0
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4565 .

<4

Expert parallelism (in vLLM)

Mixture of Expert: A set of linear
layers (experts) where each token
only pick a subset to run on
Distribute different experts to
different nodes

Friendly for GPU kernels

Smaller communication than TP
Only apply for MoE layers.
Attention needs DP.

Different experts have different
loads, which needs to be balanced

S .
\\

\

:

‘

:

:

FFN 2
I’ 1
|‘. |We |Like |To IPIay l |We |Like |SoccerIFieId| /'
P, Top-k |:| Top-k///
DDDDDDDD O0oolocd -

8 s T A < ad e
[Token 1TToken 2 IToken 3 IToken 4] [Token 5 IToken 6 IToken i IToken 8 ]
We Like To Play Soccer In The Field

Image source: https://research.google/blog/mixture-of-experts-with-expert-choice-routing
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Sequence and context parallelism (not in VLLM yet)

e Extension of DP to subsequences of a
single long sequence
e Communicate Qs or KVs across

Query ---- fevm .O@ﬂ Iteration: 0
different shards e | (i)
y . . . .
& Parallelize the sequence dimension Fm-c.mﬂ - ﬁmn@
for very long sequences. Balance the

B

GPU3 3 (k3] (va]
(01)+(02)+(03)+(04)

KV Cache across shards

No parameter memory saving

For sampling one request, only one
GPU will be running. Require
balancing requests loads.

o

Image source: https://coconut-mode.com/posts/ring-attention/
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FAIPAYRS

Pipeline parallelism

Distribute the layers to different

GPUs and pipeline the execution

across devices

Lowest communication overhead
Increased latency

Throughput bottlenecked by the

slowest stage

(in VLLM)

Output
Device N [ Layer N
Device N-1 [ Layer N-1
Device 2 [ Layer 2
Device 1 [ Layer 1

Input
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Communication kernel

e Communication kernels have different requirements in inference:

Ring All Reduce One-shot All Reduce
(NCCL) (Ours)
@ > @ @m@
0) 1 0] 1

AN

%
3 )< 1\ 2 3 )\ 2

Optimized for large tensors Optimized for small tensors




Prefill-Decode Disaggregation

Different parallelization strategies have different
characteristics in computation/memory/communication
requirements
Different stages of LLM inference have different
characteristics as well:

o Prefill: typically compute bound

o Decode: typically memory bound and require large KV

cache memory

Disaggregation: Have different setups for prefill and
decode. Transfer the KV cache between them.

Side benefit: Separate concern on
time-to-first-token/time-per-output-token

63



Key Focuses in vLLM

Inference optimizations

64



Inference Optimizations

Optimizing the the model:
o Quantization

Optimizing “prefill”:
o Prefix caching, CPU KV cache offloading, etc.

Optimizing “decode”:
o Speculative decoding, Jump decoding, etc.
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Quantization

Use reduced precisions to store & compute the model

o BFloat 16 & Float 16 are the standard for “unquantized” models
o Quantization typically means using 8 or lower bits (e.g., FP8, INT8, FP4)

Native hardware support makes quantization increasingly effective
(e.g., FP8 in Hopper & FP4 in Blackwell)
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LLM Quantization

LLMs have 3 axes to quantize
o Size: Weights >= KV cache >>> Activation

Weight quantization (e.g., FP8, INT8, GPTQ, AWQ)

e Main benefits: Reduced storage & memory footprints

KV cache quantization (e.qg., FP8)

e Main benefits: Reduced KV cache storage & Faster attention

Activation quantization (e.g., FP8, INT8)

e Main benefits: Faster GeMM & communication (in distributed inference)
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Quantization support in vLLM

() LLM Compressor

Model

Accurate Model Faster and Cheaper
Compression Deployments
i M LLM Compressor Compressed Tensors vLLM

Your HF Model

HF Model Hub
NM Pre-Compresse d LLM
> — - v
i ol
ramewor nference

Dataset

‘ Algorithms Application
-
GPTQ,
Your Dataset SparseGPT, LUt
HF Datasets SnoothQuant Python

NM Curated Datasets

uuuuuuuuu

LLM Compressor library for

quantizing the model weights

vLLM provides highly-tuned
GPU kernels for quantized
ops
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Automatic Prefix Caching

Example 1: Shared system prompt

Request A

Request B

A chat between a curious user and an
artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user’s questions.
User: Hello!

A chat between a curious user and an Shared
artificial intelligence assistant. The
assistant gives helpful, detailed, and

polite answers to the user’s questions.
User: How are you?
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Automatic Prefix Caching

Example 2: Multi-round conversation

Prompt (round 1)
Human: What's AI?

LLM Result (round 1)\Prompf (round 2)
LLM: AI is technology that
Is fec gy d > Human: What's AI?

simulates human intelligence, Share )
. .. LLM: AI is technol that
like Siri or Google Maps. _ Is technology tha

simulates human intelligence,
like Siri or Google Maps.
Human: Cool, thanks!

LLM Result (round 2)
LLM: No problem! 70



Hash-Based Automatic Prefix Caching

Request: A chat between a curious user ... A chat between a
( ) reuse (
Hash(“A chat”) Block A Hash(“A chat”) Block A
[A chat] [A chat]
J .
( 1 (
Request Hash(“A chat Block B Hash(“A chat reuse Block B
KV Blocks: between a”) | [betweena] | between a”) | [betweena]
(" ) 4
Hash(“A chat between Block C Hash(“A chat between Block D
a curious user”) | [curious user] | a cute puppy”) | [cute puppy]




Speculative Decoding

Small model writes a draft — Large model verifies it

Much faster: verifying 5 tokens takes similar time as generating 1 token

Verification
Draft [Several famous  songs areJ@ composed
[(D Several @ famous @ songs @are] -— T T T T T
I

i f A 1

Small Model Large Model

|
|
|

(#parameter: N) : (#parameter: 10xN)

|
f i ) g !

<s> Several famous songs 1 T T T T T

- > <S> Several famous songs are

\ ) \ )
1 1
Autoregressive (sequential) Non-autoregressive (parallel)

Image source: Speculative Decoding with Big Little Decoder
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https://arxiv.org/abs/2302.07863

Jump Decoding

“Jump” the token generation using the predefined JSON schema

JSON schema
for Structured Outputs

Without Optimization

{

“name”: str,
“description”: str,
“price”: float,

{

», € »

“hame”: ,

4 tokens

“descrlp’rlon —

in 4 steps

With Jump Decoding

{

name), ({1 ”,/

Triggers

»

‘(J'u mp”

4 tokens

“descrlp'rlon I~

Reference: Fast JSON Decoding for Local LLMs with Compressed Finite State Machine

in 1 step


https://lmsys.org/blog/2024-02-05-compressed-fsm/

Unified representation for scheduling

e The scheduling decision is simply represented as a
dictionary of {request_id: num_tokens}
e “token budget” to control the per-step execution time

R1 R2
Prompts
R3
Token budget (10) Scheduler Output
AL {request: num_tokens}
r N

Step O {R1: 3, R2: 5, R3: 2}
Step1l ol ol {R1:1, R2: 1, R3: 8}
Step 2 |02 02 {R1:1, R2: 1, R3: 2}

Step3 03 03 ol {R1:1,R2: 1, R3: 1}



Unified representation for scheduling (cont’d)

e Unification of “prefill” and “decode”

o There’s no concept of prefill and decode
o Schedule based on the difference between num compute tokens and
len(all token_ids)

e Ex1) “Prefill” & “Decode”

num_computed_tokens: @

}
all_token_ids Al is the future of
N Y,
Y
Schedule 5 tokens (“prefill”)
num_computed_tokens: 5
}
all token_ ids Al is the future of tech
——

Schedule 1 token (“decode”)



Unified representation for scheduling (cont’d)

I”

e Unification of “prefill” and “decode”

o There’s no concept of prefill and decode
o Schedule based on the difference between num compute tokens and
len(all token_ids)

e Ex2) Chunked prefills

num_computed_tokens: @

}
all_token_ids Al is the future of
N Y,
Y
Schedule 3 tokens out of 5
num_computed_tokens: 3
}
all token_ ids Al is the future of
C J

v
Schedule 2 tokens



Unified representation for scheduling (cont’d)

I”

e Unification of “prefill” and “decode”
o There’s no concept of prefill and decode
o Schedule based on the difference between num compute tokens and
len(all token_ids)

e EXx3) Prefix caching

num_computed_tokens: 2
!
all_token_ids Al is the future of

N AN J
Y Y

Cache hit! Schedule 3 tokens
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Prompt

Output

Let’s combine them all together!

Without optimizations

<SYSTEM> You are a helpful, respectful and honest assistant. ...

Structure your response strictly in a given JSON format.
<USER> Generate a description for this item: ...

Prompt

Output

Optimizations Combined

<SYSTEM> You are a helpful, respectful and honest assistant. ...

Structure your response strictly in a given JSON format.
<USER> Generate a description for this item: ...
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Key Focuses in vLLM

Performance engineering
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Performance Engineering

The biggest lesson we’ve learned in vLLM

“To fully utilize the GPU, we need to pay close attention to everything
happening on the CPU (i.e., CPU overheads)”

Ex) If you build an inference engine in PyTorch without caring much
about CPU overheads, you will likely get 10-20% GPU utilization
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CPU Overheads

CPU overheads in an old version of vLLM

API server (33%) Model Exec (38%)

CPU time (29%): scheduling requests, preparing
LLM inputs, organizing LLM outputs.

Why so much overheads?

© O O O

Python is slow

We didn’t utilize multiple threads/processes efficiently in Python
PyTorch has performance pitfalls

Continuous batching makes input preparation complicated
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Optimized Engine Loop & API Server

Goal: Make sure GPU is not stalled

By pre-processing
O E.g., converting JPEG images into input tensors (resizing, cropping, ...)

By post-processing
o E.g., de-tokenizing output token IDs into output strings

By HTTP request handling

o E.g., streaming outputs to 100s of concurrent users
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Optimized Engine Loop & API Server (cont’d)

e Two-process approach

o Process 0 (Frontend): Pre-/post-processing & API Server
m Importantly, de-tokenization happens in Process O

o Process 1 (EngineCore): Schedule & execute the model every step
m A busy loop that is NOT blocked by Process 0

per request generate()

iterates

output handler anESeney
busy_loop
AsyncLLM AsyncLLM
socket.poll() process()
put creates
detokenizer() asyncio.queue() socket.send()
Process 0
R moyoor | Process1
EngineCore

socket.poll()
EngineCoreInput
msgpack

schedule()

execute()

EngineCoreOutput
socket.send
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Incremental Input Preparation (Persistent Batch)

In VO, input tensors are re-created from scratch at every step

In V1, input tensors are cached, and we only apply the diff at each step

o Typically, the diff is minimal because only a few requests join or finish at each step
o The gain is larger for larger objects like block table

max_num_reqgs

A
- A

temperature 0.8/1.0 0.9 0.5 0.7
RO R1 R2 R3 R4

R1 finish

‘ R5, R6 join
femperature 0.8 0.6 0.9 0.5/ 0.7 0.8
RO R5 R2 R3 R4 Ré6
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https://github.com/InternLM/lmdeploy

CPU

GPU

CPU

GPU

CUDA Graph for Low Latency

Python/PyTorch overhead

Ve

[ torch.nn.Linear |

N

torch.nn.GELU

I torch.nn.Linear |

\

\

\

N matmul
kernel

]

\
=
kernel

N\
\

matmul
kernel

]

\

J

Rﬁe

\

J

hﬁe

Python/PyTorch overhead takes up to 50% of overall latency

CUDA Graph
AL

-
Time

matmul>
kernel

\” geru\”
kernel

matmul
kernel

)

>

Timess



Piecewise CUDA Graphs

Attention

~N

/

sl

~N

Z\QNTNV

7

VO: for the entire model

Pros: Minimal CPU overheads in model
execution

Cons: Limited flexibility
o Static shapes are required
o No CPU operations are allowed

— Increased development burden
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Piecewise CUDA Graphs (cont’d)

-

/

/QMV\

Vs

~N

MLP 1

i

MLP O

1

Attention

\
(r

J
~

o JLe JLv

Graph split using
torch.compile
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Piecewise CUDA Graphs (cont’d)

/

/QMV\

~N

N\

MLP 1
J
t
.
MLP O
J
T D
Attention
——— ),
: N )
o J[ e JLy
A 4
Y

V1: Splits the model into pieces
o Runs the attention op in
o Runs other ops with
m Easy to capture, since the ops are token-wise

Pros: Maximum freedom in implementing

the attention op
o No restriction on shapes
o Any CPU operations are allowed

Cons: CPU overheads unhidden by CUDA

graphs could slow down the model execution
o Negligible for 8B+ models on H100
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