
PagedAttention & vLLM
for Efficient LLM Inference

Woosuk Kwon

Contents

● PagedAttention

● vLLM: A real-world open-source LLM serving system
○ Models
○ Parallelism
○ Inference optimizations

● Q&A

2

Contents

● PagedAttention

● vLLM: A real-world open-source LLM serving system
○ Models
○ Parallelism
○ Inference optimizations

● Q&A

3

The era of Large Language Models (LLMs)

Chat

Program

Search

…
4

OPT-175B serving demo (Fall 2022)

5

Serving LLMs is (surprisingly) slow and expensive

● A single A100 GPU can only serve < 1 request per second
○ Moderate size of model (13B parameters) and input

● A ton of GPUs are required for production-scale LLM services

6

LLM inference process

Artificial Intelligence is

Emb

Layer 1

Layer N-1

Layer N

Emb

Layer 1

Layer N-1

Layer N

Emb

Layer 1

Layer N-1

Layer N

the

… … …

Tr
an

sf
or

m
er

 la
ye

rs

Input prompt 7

LLM inference process

Emb

Layer 1

Layer N-1

Layer N

Artificial

Emb

Layer 1

Layer N-1

Layer N

Emb

Layer 1

Layer N-1

Layer N

Intelligence is

Emb

Layer 1

Layer N-1

Layer N

the

the

… … … …

future

Tr
an

sf
or

m
er

 la
ye

rs

8

LLM inference process

Emb

Layer 1

Layer N-1

Layer N

Artificial

Emb

Layer 1

Layer N-1

Layer N

Emb

Layer 1

Layer N-1

Layer N

Intelligence is

Emb

Layer 1

Layer N-1

Layer N

the

the

… … … …

Emb

Layer 1

Layer N-1

Layer N

future

…

future of

Tr
an

sf
or

m
er

 la
ye

rs

…

Repeat until
● Reaches maximum length (e.g., 2048 tokens)
● Generate certain tokens (e.g., “<|end of sequence|>”)
● …

9

Why is LLM inference inefficient?

… … … … … …

the future of

Artificial Intelligence is the future

Sequential dependency → Hard for GPU parallelization 10

Batching?

… … … … … …

the future of

Artificial Intelligence is the future

Alan Turing is

a computer scientist

a computer

Better utilize
parallel hardware

11

Attention KV cache

future

the

Tr
an

sf
or

m
er

 la
ye

r
i

-0.8
0.1
…

0.6

Intermediate vector repr.
(“Attention key & value”)

Artificial Intelligence is

-0.1
0.3
…

1.2

0.3
-0.4

…
-0.7

0.5
-0.9

…
1.1

KV Cache

12

Attention KV cache size

of

Artificial Intelligence is future

Tr
an

sf
or

m
er

 la
ye

r
i

-0.1
0.3
…

1.2

0.3
-0.4

…
-0.7

0.5
-0.9

…
1.1

-0.8
0.1
…

0.6

KV Cache

the

-0.8
0.1
…

0.6

KV Cache is huge:
● Each token: ~1 MB.
● One full request: ~several GBs.

13

KV cache management in previous systems

● Pre-allocates contiguous memory to the request’s maximum length
○ Convention in previous deep learning workloads with static input/output shapes

Artificial Intelligence is <resv> <resv> … <resv> <resv>

3 KV Cache slots for
request A’s prompt

Pre-allocated slots for A’s output

0 3 A’s max length

● Results in memory fragmentation
○ Internal fragmentation due to the unknown output length.
○ External fragmentation due to non-uniform per-request max lengths.

… … Alan Turing …

Request BExternal frag.
(Internal frag.)

14

Significant memory waste in KV cache space

Only 20–40% of KV Cache space is utilized to store actual token states

Yu et al. “Orca: A Distributed Serving System for Transformer-Based Generative Models” (OSDI 22).
15

PagedAttention

Page 0
Page 1
Page 2
Page 3
Page 4

Process
A

Process
B

Physical Memory

KV Block 0
KV Block 1
KV Block 2
KV Block 3
KV Block 4

Request
A

Request
B

KV Cache

Memory management in OS PagedAttention

Application-level memory paging and virtualization
for attention KV Cache

16

Paging KV cache space into KV blocks

Artificial Intelli-
gence is the

Artificial Intelli-
gence is the

block 0

block 1

block 2

block 3

block 4

block 5

Block size = 4

Contiguous KV Cache

KV Blocks

KV block: a fixed-size block of
memory that stores KV cache
from left to right

17

Virtualizing KV Cache

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

18

Attention mechanism with virtualized KV cache

1. Fetch non-contiguous KV blocks using the block table
2. Apply attention operation on the fly

5-10% slowdown in GPU kernel latency
due to memory indirection

19

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

20

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 2

– –

– –

Block table

Completion: “and”

21

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 3

– –

– –

Block table

Completion: “and”

22

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

– –

– –

Block table

Completion: “and mathematician”

23

Memory management with PagedAttention

Request
A

Alan Turing is a

computer scientist and mathema
tician

renowned

Prompt: “Alan Turing is a computer scientist”

block 0

block 1

block 2

block 3

computer scientist and mathem
atician

renowned

Alan Turing is a

Physical KV blocks

block 0

block 1

block 2

block 3

block 4

block 5

block 6

block 7

Logical KV blocks

Physical
block number # Filled

7 4

1 4

5 1

– –

Block table

Completion: “and mathematician renowned”

Allocated on demand

24

Memory efficiency of PagedAttention

● Minimal internal fragmentation
○ Only happens at the last block of a sequence
○ # wasted tokens/seq < block size

■ Sequence: ~1000 tokens
■ Block size: ~10 tokens

● No external fragmentation

Alan Turing is a

computer scientist and mathemati
cian

renowned

Internal fragmentation

2.5-5x improvement

25

Paging enables sharing

The future of cloud computing
is likely to be characterized by
several key trends

LLM

Prompt

that will shape the industry and
its impact on businesses and
individuals…

each playing a pivotal role in
reshaping how businesses
leverage technology…

which will not only transform the
way organizations operate but
also empowering them…

Multiple outputs

Shared btw. sequences

Example: Parallel sampling

26

Sharing KV blocks

Logical KV blocks

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends

27

Sharing KV blocks

Logical KV blocks

key trends each

The future of cloud

key trends that

comput-
ing is likely to

be charac-
terized by several

Physical KV blocks

Sample
B

Sample
A

Logical KV blocks

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends that

The future of cloud

comput-
ing is likely to

be charac-
terized by several

key trends each

Copy-on-Write

All prompt blocks (except the last)
are shared across samples

28

More complex sharing: beam search

Alan Turing is a

famous

British

Prompt

computer

mathemat
ician

Beam 0

Beam 2

scientist

and

who

computer

created

scientist

ledBeam 1

Shared btw. two beams

Shared btw. three beams

● Similar to process tree (fork & kill)
● Efficiently supported by paged attention and copy-on-write mechanism

29

Memory saving via sharing

Percentage = (#blocks saved by sharing) / (#total blocks without sharing)
OPT-13B on 1x A100-40G with ShareGPT dataset

30

How does PagedAttention benefit LLM Serving?

31

Reduce memory
fragmentation with

paging

Further reduce
memory usage with

sharing

Out of KV block memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned

Alan Turing is a

Physical KV blocks

Request
A

Request
B

Full

32

Out of KV block memory

The future of cloud

computer scientist and mathe-
matician

computing is likely to

renowned for

Alan Turing is a

Physical KV blocks

Request
A

Request
B

be

Cannot allocate a
new physical block
for Request B

33

Request preemption & recovery

Swap to
CPU

Swap back
to GPU

Option 1: Swapping

Recompute

Delete

Option 2: Recomputation

Goal: Free some requests’ KV cache to let others run first.

34

Notes on preemption & recovery

Swap/recompute the whole request, since all
previous tokens are required every step.

Swapping: smaller block sizes → higher
overhead due to small data transfers.

Recomputation: surprisingly fast since all
token’s KV cache can be computed in parallel. Figure: Swap/Recomputation

latency of 256 tokens.

Our strategy: Use recomputation when possible with FCFS policy

35

Comparison with operating system virtual memory

Analogies Differences

OS pages ↔ KV blocks
● Reduce memory fragmentation

Single-level block table
● Block table is tiny compared to

the actual data.
Shared pages across processes
↔ Shared KV blocks across samples
● Reduce memory waste via

sharing

Preemption & Recovery
● Request-level preemption
● Recomputation-based recovery

36

Throughput – greedy decoding

OPT-13B on 1xA100 40G with ShareGPT trace.

Average number of batched requests.

2.4x speedup

37

Throughput – beam search

Beam width = 2
2.4x speedup

Beam width = 4
3.2x speedup

Beam width = 6
3.5x speedup

No beam search
1.8x speedup

OPT-13B on 1xA100 40G with Alpaca trace.
Speedup: vLLM v.s. Orca(Pow2)

38

PagedAttention has become the industrial standard

39
TensorRT-LLM HuggingFace TGI Fireworks AI

…

Contents

● PagedAttention

● vLLM: A real-world open-source LLM serving system
○ Models
○ Parallelism
○ Inference optimizations

● Q&A

40

vLLM's Goal

Build the fastest and

easiest-to-use open-source

LLM inference & serving engine

41

vLLM Today
https://github.com/vllm-project/vllm

$ pip install vllm

43K Stars

Official
release!

42

https://github.com/vllm-project/vllm

● 600+ PRs a month
● 890+ contributors
● 30+ major contributors from UCB, RedHat, Anyscale,

Roblox, Meta, etc.

vLLM Community

43

vLLM API (1): LLM class

from vllm import LLM

Example prompts.
prompts = ["Hello, my name is", "The capital of France is"]
Create an LLM with HF model name.
llm = LLM(model="meta-llama/Meta-Llama-3.1-8B")
Generate texts from the prompts.
outputs = llm.generate(prompts)

A Python interface for offline batched inference

44

vLLM API (2): OpenAI-compatible server

$ vllm serve meta-llama/Meta-Llama-3.1-8B

$ curl http://localhost:8000/v1/completions \

 -H "Content-Type: application/json" \

 -d '{

 "model": "meta-llama/Meta-Llama-3.1-8B",

 "prompt": "San Francisco is a",

 "max_tokens": 7,

 "temperature": 0

 }'

A FastAPI-based server for online serving

Server

Client

45

Key Focuses in vLLM

46

Models

Parallelism

Inference optimizations

Performance engineering

Key Focuses in vLLM

47

Models

Parallelism

Inference optimizations

Performance engineering

Broad Model Support

48

● Transformer-like LLMs (e.g., Llama)

● Mixture-of-Expert LLMs (e.g., DeepSeek)

● Multi-modal LLMs (e.g., Qwen-VL)

● State-Space Models (e.g., Mamba)

● Embedding Models (e.g. E5-Mistral)

Easy Model Integration

49

● vLLM is based on PyTorch and HuggingFace Transformers

● vLLM requires minimal changes to the model code

class LlamaAttention(nn.Module):

def __init__(self, ...):
 self.qkv_proj = nn.Linear(...)
 self.attn = Attention(...)
 ...

def forward(self, x):
 qkv = self.qkv_proj(x)
 q, k, v = qkv.split(...)
 attn_output = self.attn(q, k, v)
 ...

class LlamaAttention(nn.Module):

def __init__(self, ...):
 self.qkv_proj = ColParallelLinear(...)
 self.attn = PagedAttention(...)
 ...

def forward(self, x):
 qkv = self.qkv_proj(x)
 q, k, v = qkv.split(...)
 attn_output = self.attn(q, k, v)
 ...

Original model
(HuggingFace)

vLLM

First-class Support for Multi-modal Models

50

@MULTIMODAL_REGISTRY.register_image_input_mapper(image_input_mapper)
@MULTIMODAL_REGISTRY.register_input_mapper("video", video_input_mapper)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_image_tokens)
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens("video",
 get_max_video_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_qwen2_vl)
@INPUT_REGISTRY.register_input_processor(input_processor_for_qwen2_vl)
class Qwen2VL(nn.Module, SupportsMultiModal):

 def __init__(self,
 config: Qwen2VLConfig,
 multimodal_config: MultiModalConfig):
 super().__init__()
 ...

vLLM provides a structured way to register models with various modalities
(e.g., image, video, and audio)

Hybrid Attention Models

● Various attention variants to efficiently support long context:
○ Multi-head Latent Attention (DeepSeek)
○ Sliding window attention
○ Local chunked attention
○ State-space models (Mamba)

● Importantly, all of the above can be mixed in a single model
○ Gemma 3: Global attention + sliding window attention
○ Llama 4: Global attention + local chunked attention
○ Jamba: Global attention + Mamba

51

Hybrid memory allocator

● We are building a two-layer memory allocator/evictor
to manage the heterogeneous memory:

Shared page allocator

self-attn
allocator

mamba
allocator

Customized pages for the request

● Jenga: Effective Memory Management for Serving LLM
with Heterogeneity

52

https://arxiv.org/abs/2503.18292
https://arxiv.org/abs/2503.18292

Manual CUDA kernels v.s. torch.compile

● vLLM once maintained a large set of CUDA kernels, with different
kernel fusion and quantization.

● The modifications to the model code because of these kernels make
the model code less readable and harder to maintain.

Modularity

Maintenance
Performance

torch.compile

53

Key Focuses in vLLM

54

Models

Parallelism

Inference optimizations

Performance engineering

Why do we need parallelism?

● Models are getting much bigger than a single GPU
○ Deepseek V3: 671B parameters → ~700GB in FP8
○ NVIDIA H100: 80GB HBM
○ Memory is not only used for parameters,

activations and KV cache also takes memory
● Use more GPUs to multiple the compute power

○ Reduce serving latency
○ Increase serving throughput

55

Things to consider for parallelism

● Theoretically, all tensors can be arbitrarily distributed and
all dimensions of all tensors can be sharded.

● Goal 1: Minimize communication
○ Limit the number of bytes transferred
○ Hide the overhead via overlapping with computation
○ Network is also heterogeneous

■ Latest NVLink: 1.4TB/s
■ Infiniband: 50GB/s

● Goal 2: Minimize waiting from data dependency and
stragglers’ effect
○ A system is often bottlenecked by the slowest

component

56

Data parallelism (mostly outside of vLLM)

● Replicated engines
● A load-balancer routes different

requests to different engines based on
○ Engine load
○ KV cache memory usage
○ (Prefix) Caching

👍 No communication between engines
👎 No parameter memory saving, which

can limit the KV cache size, and thus
serving throughput

👎 No reduction in latency

Engine 1

Engine 2

Requests

57

Tensor parallelism (in vLLM)

● Partition the weights in the linear
layers

👍 Reduce the serving latency if the
network is fast

👍 KV Cache can also be partitioned
👎 Heavy communication across TP

shards. Often require NVLink to
work effectively.

Image source: https://www.titanml.co/resources/harmonizing-multi-gpus-efficient-scaling-of-llm-inference
58

https://www.titanml.co/resources/harmonizing-multi-gpus-efficient-scaling-of-llm-inference

Expert parallelism (in vLLM)

● Mixture of Expert: A set of linear
layers (experts) where each token
only pick a subset to run on

● Distribute different experts to
different nodes

👍 Friendly for GPU kernels
👍 Smaller communication than TP
👎 Only apply for MoE layers.

Attention needs DP.
👎 Different experts have different

loads, which needs to be balanced

Image source: https://research.google/blog/mixture-of-experts-with-expert-choice-routing/
59

https://research.google/blog/mixture-of-experts-with-expert-choice-routing/

Sequence and context parallelism (not in vLLM yet)

● Extension of DP to subsequences of a
single long sequence

● Communicate Qs or KVs across
different shards

👍 Parallelize the sequence dimension
for very long sequences. Balance the
KV Cache across shards

👎 No parameter memory saving
👎 For sampling one request, only one

GPU will be running. Require
balancing requests loads.

Image source: https://coconut-mode.com/posts/ring-attention/
60

https://coconut-mode.com/posts/ring-attention/

Pipeline parallelism (in vLLM)

● Distribute the layers to different
GPUs and pipeline the execution
across devices

👍 Lowest communication overhead
👎 Increased latency
👎 Throughput bottlenecked by the

slowest stage
Device 1

Device 2

Device N-1

Device N

Layer 1

Layer 2

Layer N-1

Layer N

…

Output

Input

61

Communication kernel

● Communication kernels have different requirements in inference:

GPU
0

GPU
1

GPU
3

GPU
2

Ring All Reduce
(NCCL)

GPU
0

GPU
1

GPU
3

GPU
2

One-shot All Reduce
(Ours)

Optimized for large tensors Optimized for small tensors
62

Prefill-Decode Disaggregation

● Different parallelization strategies have different
characteristics in computation/memory/communication
requirements

● Different stages of LLM inference have different
characteristics as well:
○ Prefill: typically compute bound
○ Decode: typically memory bound and require large KV

cache memory
● Disaggregation: Have different setups for prefill and

decode. Transfer the KV cache between them.
● Side benefit: Separate concern on

time-to-first-token/time-per-output-token

63

Key Focuses in vLLM

64

Models

Parallelism

Inference optimizations

Performance engineering

Inference Optimizations

● Optimizing the the model:
○ Quantization

● Optimizing “prefill”:
○ Prefix caching, CPU KV cache offloading, etc.

● Optimizing “decode”:
○ Speculative decoding, Jump decoding, etc.

65

Quantization

● Use reduced precisions to store & compute the model
○ BFloat 16 & Float 16 are the standard for “unquantized” models
○ Quantization typically means using 8 or lower bits (e.g., FP8, INT8, FP4)

● Native hardware support makes quantization increasingly effective
(e.g., FP8 in Hopper & FP4 in Blackwell)

66

LLM Quantization

● LLMs have 3 axes to quantize
○ Size: Weights >= KV cache >>> Activation

1. Weight quantization (e.g., FP8, INT8, GPTQ, AWQ)
● Main benefits: Reduced storage & memory footprints

2. KV cache quantization (e.g., FP8)
● Main benefits: Reduced KV cache storage & Faster attention

3. Activation quantization (e.g., FP8, INT8)
● Main benefits: Faster GeMM & communication (in distributed inference)

67

Quantization support in vLLM

● LLM Compressor library for
quantizing the model weights

● vLLM provides highly-tuned
GPU kernels for quantized
ops

LLM Compressor

68

Automatic Prefix Caching

69

Example 1: Shared system prompt

Request A

A chat between a curious user and an
artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user's questions.
User: Hello!

Request B

A chat between a curious user and an
artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user's questions.
User: How are you?

Shared

Automatic Prefix Caching

70

Example 2: Multi-round conversation
Prompt (round 1)
Human: What's AI?

LLM Result (round 1)
LLM: AI is technology that
simulates human intelligence,
like Siri or Google Maps.

Prompt (round 2)
Human: What's AI?
LLM: AI is technology that
simulates human intelligence,
like Siri or Google Maps.
Human: Cool, thanks!

LLM Result (round 2)
LLM: No problem!

Shared

Hash-Based Automatic Prefix Caching

71

Request
KV Blocks:

Block A
[A chat]

Block B
[between a]

Block C
[curious user]

Request: A chat between a curious user …

…

Hash(“A chat”)

Hash(“A chat
 between a”)

Hash(“A chat between
 a curious user”)

Block A
[A chat]

Block B
[between a]

Block D
[cute puppy]

A chat between a cute puppy …

…

Hash(“A chat”)

Hash(“A chat
 between a”)

Hash(“A chat between
 a cute puppy”)

reuse

reuse

Speculative Decoding

Small Model
(#parameter: N)

<s>

① Several

Several

② famous

famous

③ songs

songs

④ are

Autoregressive (sequential) Non-autoregressive (parallel)

Large Model
(#parameter: 10xN)

<s> Several famous songs are

⑤ composedSeveral famous songs areDraft

Verification

Small model writes a draft → Large model verifies it

Much faster: verifying 5 tokens takes similar time as generating 1 token

72
Image source: Speculative Decoding with Big Little Decoder

https://arxiv.org/abs/2302.07863

“Jump” the token generation using the predefined JSON schema

Jump Decoding

JSON schema
for Structured Outputs

{
 “name”: str,
 “description”: str,
 “price”: float,
 . . .
}

{
 “name”: “. . .” ,
 “description”:

Without Optimization

4 tokens
in 4 steps

{
 “name”: “. . .”,
 “description”:

With Jump Decoding
Triggers
“Jump”

4 tokens
in 1 step

Reference: Fast JSON Decoding for Local LLMs with Compressed Finite State Machine

https://lmsys.org/blog/2024-02-05-compressed-fsm/

Unified representation for scheduling

74

Step 0

o1 o1Step 1

o2 o2Step 2

R1 R2

R3
Token budget (10)

o3 o3 o1Step 3

{R1: 3, R2: 5, R3: 2}

{R1: 1, R2: 1, R3: 8}

{R1: 1, R2: 1, R3: 2}

{R1: 1, R2: 1, R3: 1}

Scheduler Output
{request: num_tokens}

● The scheduling decision is simply represented as a
dictionary of {request_id: num_tokens}

● “token budget” to control the per-step execution time

Prompts

● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and

len(all_token_ids)

Unified representation for scheduling (cont’d)

75

● Ex1) “Prefill” & “Decode”

AI is the future of

num_computed_tokens: 0

all_token_ids

Schedule 5 tokens (“prefill”)

AI is the future of tech

num_computed_tokens: 5

all_token_ids

Schedule 1 token (“decode”)

● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and

len(all_token_ids)

76

● Ex2) Chunked prefills

AI is the future of

num_computed_tokens: 0

all_token_ids

Schedule 3 tokens out of 5

AI is the future of

num_computed_tokens: 3

all_token_ids

Schedule 2 tokens

Unified representation for scheduling (cont’d)

● Unification of “prefill” and “decode”
○ There’s no concept of prefill and decode
○ Schedule based on the difference between num_compute_tokens and

len(all_token_ids)

77

● Ex3) Prefix caching

AI is the future of

num_computed_tokens: 2

all_token_ids

Schedule 3 tokensCache hit!

Unified representation for scheduling (cont’d)

Let’s combine them all together!

78

Without optimizations Optimizations Combined

Key Focuses in vLLM

79

Models

Parallelism

Inference optimizations

Performance engineering

Performance Engineering

● The biggest lesson we’ve learned in vLLM

“To fully utilize the GPU, we need to pay close attention to everything
happening on the CPU (i.e., CPU overheads)”

● Ex) If you build an inference engine in PyTorch without caring much
about CPU overheads, you will likely get 10-20% GPU utilization

80

CPU Overheads

● CPU overheads in an old version of vLLM

CPU time (29%): scheduling requests, preparing
LLM inputs, organizing LLM outputs.

API server (33%) Model Exec (38%)

● Why so much overheads?
○ Python is slow
○ We didn’t utilize multiple threads/processes efficiently in Python
○ PyTorch has performance pitfalls
○ Continuous batching makes input preparation complicated

81

Optimized Engine Loop & API Server

82

Goal: Make sure GPU is not stalled

● By pre-processing
○ E.g., converting JPEG images into input tensors (resizing, cropping, …)

● By post-processing
○ E.g., de-tokenizing output token IDs into output strings

● By HTTP request handling
○ E.g., streaming outputs to 100s of concurrent users

Optimized Engine Loop & API Server (cont’d)

83

● Two-process approach
○ Process 0 (Frontend): Pre-/post-processing & API Server

■ Importantly, de-tokenization happens in Process 0
○ Process 1 (EngineCore): Schedule & execute the model every step

■ A busy loop that is NOT blocked by Process 0

● In V0, input tensors are re-created from scratch at every step
● In V1, input tensors are cached, and we only apply the diff at each step

○ Typically, the diff is minimal because only a few requests join or finish at each step
○ The gain is larger for larger objects like block table

Incremental Input Preparation (Persistent Batch)

84

0.8 1.0 0.9 0.5 0.7temperature

max_num_reqs

R0 R1 R2 R3 R4

0.8 0.6 0.9 0.5 0.7 0.8temperature

R0 R5 R2 R3 R4 R6

R1 finish
R5, R6 join

https://github.com/InternLM/lmdeploy

CUDA Graph for Low Latency

Time

CPU

GPU

torch.nn.Linear

matmul
kernel

torch.nn.GELU torch.nn.Linear

matmul
kernel

gelu
kernel

Python/PyTorch overhead

Idle Idle

CPU

GPU matmul
kernel

matmul
kernel

gelu
kernel

Time85

Python/PyTorch overhead takes up to 50% of overall latency

CUDA Graph

Piecewise CUDA Graphs

86

Q K V

Attention

O

MLP 0

MLP 1

Q K V ● V0: Single CUDA graph for the entire model

● Pros: Minimal CPU overheads in model
execution

● Cons: Limited flexibility
○ Static shapes are required
○ No CPU operations are allowed

→ Increased development burden

Piecewise CUDA Graphs (cont’d)

87

Q K V

Attention

O

MLP 0

MLP 1

Q K V

CUDA graph N

CUDA graph N-1

PyTorch Eager

Graph split using
torch.compile

Piecewise CUDA Graphs (cont’d)

88

Q K V

Attention

O

MLP 0

MLP 1

Q K V ● V1: Splits the model into pieces
○ Runs the attention op in eager-mode PyTorch
○ Runs other ops with CUDA graphs

■ Easy to capture, since the ops are token-wise

● Pros: Maximum freedom in implementing
the attention op

○ No restriction on shapes
○ Any CPU operations are allowed

● Cons: CPU overheads unhidden by CUDA
graphs could slow down the model execution

○ Negligible for 8B+ models on H100

Q & A

89

