
Optimizing Attention for
Modern Hardware

1

Tri Dao
https://tridao.me

https://tridao.me

Motivation: Modeling Long Sequences

NLP: Large context required to
understand books, plays,

codebases.

Computer vision: higher
resolution can lead to better,

more robust insight.

Time series, audio, video,
medical imaging data naturally

modeled as sequences of
millions of steps.

2

Enable
New Capabilities

Close Reality Gap Open New Areas

Efficiency is the Bottleneck for Modeling Long Sequences with Attention

How to efficiently scale models to longer sequences?
3

Context length: how many other
elements in the sequence does
the current element interact with.

2x↓

Increasing context length slows down (or stops) training

Background: Attention is the Heart of Transformers

4

Background: Attention Mechanism

O = Softmax(QKT)V

5

Q
(N x d)

K
(N x d)

x

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

Softmax 𝑠1, ⋯ , 𝑠𝑁 =
𝑒𝑠1

σ𝑖 𝑒𝑠𝑖
, ⋯ ,

𝑒𝑠𝑁

σ𝑖 𝑒𝑠𝑖

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64 – 128

S = 𝑄 𝐾𝑇

(N x N)
A = Softmax(𝑆)

(N x N)

Attention scales quadratically in sequence length N

Is there a fast, memory-efficient, and exact attention algorithm?
6

Background: Approximate Attention

Survey: Tay et al. Long Range Arena : A Benchmark for Efficient Transformers. ICLR 2020.

Approximate attention: tradeoff quality for speedApproximate attention: tradeoff quality for speed fewer FLOPs

Our Observation: Attention is Bottlenecked by Memory Reads/Writes

7

Q
(N x d)

K
(N x d)

S = 𝑄 𝐾𝑇

(N x N)

x

A = Softmax(𝑆)
(N x N)

V
(N x d)

x

O
(N x d)

=

Query Key Similarity
Score

Attention prob
= row-wise normalized

similarity score

Value Output

→ →

Typical sequence length N: 1K – 8K
Head dimension d: 64-128

The biggest cost is in moving the bits!
Standard implementation requires repeated R/W

from slow GPU memory

Background: GPU Compute Model & Memory Hierarchy

Can we exploit the memory asymmetry to get speed up?
With IO-awareness (accounting for R/W to different levels of memory)

Blogpost: Horace He, Making Deep Learning Go Brrrr From First Principles.

8

1. Inputs start out in
HBM (GPU memory)

2. Data moved to
compute units & SRAM

for computation

3. Output written
back to HBM

https://horace.io/brrr_intro.html

How to Reduce HBM Reads/Writes: Compute by Blocks

Approaches:

(1) Tiling: Restructure algorithm to load block by
block from HBM to SRAM to compute attention.

(2) Recomputation: Don’t store attn. matrix
from forward, recompute it in the backward.

Challenges:

(1) Compute softmax normalization without access
to full input.

(2) Backward without the large attention matrix from
forward.

9

Attention Computation Overview

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺)
𝑨

𝒍
∙ 𝑽

𝒍 =෍

𝒊

exp 𝑺 𝒊

𝑸

𝑲𝑻

𝑽∙ =

Output

Softmax row-wise
normalization constant 10Compute by blocks: easy to split Q, but how do we split K & V?

𝑨(𝟏)

𝒍
∙ 𝑽 𝟏

+
𝑨(𝟐)

𝒍
∙ 𝑽(𝟐)

Tiling – 1st Attempt: Computing Attention by Blocks

𝑸

𝑽(𝟏)

∙ =

Output

(𝑲 𝟏)𝑻 (𝑲 𝟐)𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

Challenge: How to compute softmax normalization with just
local results?

𝒍 =෍

𝒊

exp 𝑺 𝟏
𝒊
+෍

𝒊

exp 𝑺𝟐
𝒊

Example: Split K into 2 blocks

Softmax row-wise
normalization constant

Goal:
Load each block from HBM to
SRAM & do local computation

11

𝑶(𝟐) =
𝒍(𝟏)

𝒍(𝟐)
𝑶(𝟏)

+
𝑨(𝟐)

𝒍(𝟐)
∙ 𝑽(𝟐)

Tiling – 2nd Attempt: Computing Attention by Blocks, with Softmax Rescaling

𝑸

𝑽(𝟏)

∙ =

Output

(𝑲 𝟏)𝑻 (𝑲 𝟐)𝑻

𝑺(𝟏) = 𝑸 𝑲 𝟏 𝑻
𝑺(𝟐) = 𝑸 𝑲 𝟐 𝑻

𝑨(𝟏) = exp(𝑺(𝟏)) 𝑨(𝟐) = exp(𝑺(𝟐))

𝑽(𝟐)

𝒍(𝟏) =෍

𝒊

exp 𝑺 𝟏
𝒊

𝒍(𝟐) = 𝒍(𝟏) + ෍

𝒊

exp 𝑺 𝟐
𝒊

𝑶(𝟏) =
𝑨(𝟏)

𝒍(𝟏)
∙ 𝑽(𝟏)

Local
computation

Tiling + Rescaling allows local computation in SRAM, without
writing to HBM, and get the right answer!

Stored in HBM

Computed in SRAM
(not materialized in HBM)

12

Goal:
Load each block from HBM to
SRAM & do local computation

Wrong
denominator 

𝒍 =෍

𝒊

exp 𝑺 𝟏
𝒊
+෍

𝒊

exp 𝑺𝟐
𝒊

Output we want:

𝑶 =
𝑨(𝟏)

𝒍
∙ 𝑽 𝟏 +

𝑨(𝟐)

𝒍
∙ 𝑽(𝟐)

Rescaling to
correct

denominator

Tiling

Decomposing large softmax into smaller ones by scaling.

1. Load inputs by blocks from HBM to SRAM.

2. On chip, compute attention output with respect to
that block.

3. Update output in HBM by scaling.

Animation credit: Francisco Massa
13

Recomputation (Backward Pass)

By storing softmax normalization from forward (size N),
quickly recompute attention in the backward from
inputs in SRAM.

FlashAttention speeds up backward pass even with increased FLOPs.

Attention Standard FlashAttention

GFLOPs 66.6 75.2 (↑13%)

HBM reads/writes (GB) 40.3 4.4 (↓9x)

Runtime (ms) 41.7 7.3 (↓6x)

14

𝑺 = 𝑸 𝑲𝑻

𝑨 = exp(𝑺)
𝑨

𝒍
∙ 𝑽

𝑸

𝑲𝑻

𝑽∙ =

Output

Stored in HBM

Recomputed in SRAM
(not materialized in HBM)

𝒍 =෍

𝒊

exp 𝑺 𝒊

FlashAttention: 2-4x speedup, 10-20x memory reduction

2-4x speedup — with no approximation!

10-20x memory reduction — memory linear in sequence length 15

Summary
Challenge: Optimizing FlashAttention for Modern Hardware

16

But, FA-2 only gets to 35-40% utilization on H100!

FlashAttention-2 is highly optimized on A100, reaching 70% utilization

17

FlashAttention-3: Optimizing FlashAttention for Hopper Architecture

1. New instructions on H100:
- WGMMA: higher throughput MMA primitive, async
- TMA: faster loading from gmem <-> smem, async, saves registers

2. Asynchrony
- Inter-warpgroup overlapping: warp-specialization, pingpong scheduling
- Intra-warpgroup overlapping: softmax and async matmul

3. Low-precision – FP8
- Solve for layout conformance, in-kernel V transpose

Plus: Persistent kernels, LPT scheduling for causal attention, GQA packing, MLA

Upshot: 1.6-3x speedup on Hopper, algorithmic ideas apply for Blackwell

Jay Shah*, Ganesh Bikshandi*, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao

18

New Instructions on Hopper: WGMMA & TMA

wgmma necessary, mma.sync can
only reach 2/3 peak throughput

TMA: accelerate gmem ->
smem copy, saves registers

Both WGMMA and TMA are asynchronous instructions:
threads issue them and can then do other work while they execute.

19

Asynchrony: Overlapping GEMM and Softmax

Why overlap?

MUFU.EX2 takes 50% the cycles of WGMMA!
FP8, or Blackwell is even worse: WGMMA and EX2 both take 1024 cycles.

We want to be doing EX2 while tensor cores are busy with WGMMA.

Example: headdim 128, block size 128 x 128
FP16 WGMMA: 2 x 2 x 128 x 128 x 128 = 8.4 MFLOPS, 4096 FLOPS/cycle -> 2048 cycles
MUFU.EX2: 128 x 128 = 16k OPS, 16 OPS/cycle -> 1024 cycles

Special Function Units (SFU) have very low throughput relative to Tensor Cores.

20

Inter-warpgroup Overlapping of GEMM and Softmax

Easy solution: leave it to the warp schedulers!

This works reasonably well, but we can do better.

Pingpong scheduling using synchronization barriers (with bar.sync):
580 TFLOPS -> 640 TFLOPS

21

Intra-warpgroup Overlapping of GEMM and Softmax

2-stage intra-warpgroup overlapping: 640 TFLOPS -> 670 TFLOPS

Per warpgroup, can finally exploit asynchrony of WGMMA.

• Overlap GEMM1 for kth iteration with softmax for (k+1)th iteration.

• Uses more registers since accumulator for next GEMM0 and operand for current
GEMM1 are now live concurrently.

22

Low-precision: FP8

FP8 Tensor Cores double WGMMA throughput, but trade off accuracy

23

FP8 Attention with Incoherent Processing

Can multiply Q and K with a random orthogonal matrix (Hadamard) to "spread out"
the outliers.
Note: S = Q.K^T = (Q J)(K J)^T for orthogonal matrix J since J.J^T = I by definition.

Reduces quantization error by 2.6x on normally distributed QKV data with 0.1%
entries given large magnitude (to simulate outliers).

24

Persistent Kernels: Hiding Prologue & Epilogue

Idea: Fixed number of CTAs (= num SMs), persistent across work tiles.
• Asynchronous TMA store to overlap epilogue, prologue, and mainloop.

Motivation: Tensor Cores are so fast, Prologue/Epilogue latency become non-trivial.

25

Persistent Kernels: Hiding Prologue & Epilogue

Prologue:
Load Q, first KV

Mainloop
Epilogue:

Write O, LSE

Prologue:
Load Q, first KV

Mainloop
Epilogue:

Write O, LSE

Persistent kernels: 670 TFLOPS -> 700 TFLOPS

Work tile 1

Work tile 2

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Example: 2 batches, 3 workers (SMs)

26

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2

3

Example: 2 batches, 3 workers (SMs)

T = 1

27

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3

1

Example: 2 batches, 3 workers (SMs)

T = 2

28

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1

Example: 2 batches, 3 workers (SMs)

2

T = 3

29

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1

Example: 2 batches, 3 workers (SMs)

2

2

3

T = 4

30

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1 1

Example: 2 batches, 3 workers (SMs)

2

2 2

3 3

T = 5

31

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1 1

Example: 2 batches, 3 workers (SMs)

2

2 2

3 3 3

1

T = 6

32

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1 1

Example: 2 batches, 3 workers (SMs)

2

2 2

3 3 3

1 1

T = 7

33

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1 1

Example: 2 batches, 3 workers (SMs)

2

2 2

3 3 3

1 1 1

T = 8

34

Load Balancing: Causal Attention

Challenge: Unequal work per tile

1

2 2

3 3 3

1 1 1 1

Example: 2 batches, 3 workers (SMs)

2

2 2

3 3 3

1 1 1 1

T = 9

Work distribution: [9, 5, 6] blocks. Longest tile is always scheduled last!
35

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

36

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

37

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

3

1 2

T = 1

38

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

3 3

1 1 2 2

T = 2

39

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

3 3 3

1 1 1 2 2 2

T = 3

40

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

3 3 3

1 1 1 1

3

2 2 2 2

T = 4

41

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

1

3 3 3

1 1 1 1

2

3 3

2 2 2 2

T = 5

42

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

1 1

3 3 3

1 1 1 1

2 2

3 3 3

2 2 2 2

T = 6

43

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

1

1 1

3 3 3

1 1 1 1

2

2 2

3 3 3

2 2 2 2

T = 7

Work distribution: [7, 7, 6] vs [9, 5, 6] previously
44

Load Balancing: Causal Attention

Challenge: Unequal work per tile

Idea: Assign work to workers using longest-processing-time-first

Causal attention speed 670 TFLOPS -> 730 TFLOPS

Caveat: Take care to not spill L2 cache (using L2 swizzling)

45

BF16 Benchmark: 1.8-2.2x speedup

46

Without causal mask With causal mask

CUDA tool kit 12.8
Triton 3.1
cuDNN 9.6 Causal Attention 730-750 TFLOPS ≈ Matmul speed!

BF16 Benchmark: Reach up to 840 TFLOPS!

47

Without causal mask With causal mask

CUDA tool kit 12.8
Triton 3.1
cuDNN 9.6

FP8 Benchmark: Up to 1.3 PFLOPS!

48

Without causal mask With causal mask

CUDA tool kit 12.8
Triton 3.1
cuDNN 9.6

49

For decoding, query length is short (on the order of a few tokens), while context length is
long (for example, 128k).

Optimizations for Decoding Inference: Old and New

From FA-2, have Flash Decoding: split along the KV sequence length to occupy
the GPU with enough work.

50

GQA Packing: compute for multiple query heads per KV head

FA-2 already did this for the case of one query token, which is a simple reshape.
In FA-3, we extend to the more involved case of arbitrary query length.
• Also benefits some compute-bound situations with tile quantization effects

WGMMA tile is 64 wide in the M dimension. This is wasted for short query length!
However, we can pack multiple query heads to fill out WGMMA tile for MQA/GQA.

BF16 Decode Benchmark for MQA. Lower is better!

51

52

Multi-head Latent Attention (MLA): Warp specialization for large head dim

WG1 does both QK matmul and PV matmul
WG2 only does PV matmul

DeepSeek’s MLA has large head dim (576 / 512)
Standard splitting doesn’t have enough registers!

QK Matmul PV Matmul

WG1

WG2

64

64 256

PV Matmul

256

160 acc registers

per thread

128 acc registers

per thread

53

Multi-head Latent Attention (MLA): Warp specialization for large head dim

Even seqlen_q = 1 (decoding 1 token) already hits compute-bound regime!

54

Blackwell’s new SASS instructions: Reducing issuing pressure

Challenge: each SM can issue 4 instructions per cycle, but FMA throughput is 128
ops/cycle, so every instruction needs to be FMA to achieve peak throughput.

Approach: New instructions:

- FADD2, FMUL2, FFMA2: 2 ops per instruction
Accessible through PTX (add.f32x2, mul.f32x2, fma.f32x2)
and through intrinsics (__fadd2_rn, __fmul2_rn, __ffma2_rn)

- FMNMX3: 3-input floating-point maximum, reduce no. of instructions
Not directly accessible but compiler will generate if you use fmax(a, fmax(b, c))

CUTLASS team. Example 77. https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

55

Example: headdim 128, block size 128 x 128, B200
BF16 UMMA: 8192 FLOPS/cycle -> 512 cycles per GEMM
MUFU.EX2: 16 OPS/cycle -> 1024 cycles

CUTLASS team. Example 77. https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

𝑺𝟎
𝑯 = 𝑸𝑯 ⋅ 𝑲𝟎

𝑷𝟎
𝑯 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑺𝟎

𝑯)

𝑺𝟎
𝑳 = 𝑸𝑳 ⋅ 𝑲𝟎

𝑶𝑯 = 𝑷𝟎
𝑯 ⋅ 𝑽𝟎 𝑺𝟏

𝑯 = 𝑸𝑯 ⋅ 𝑲𝟏

𝑷𝟎
𝑳 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑺𝟎

𝑳) 𝑷𝟏
𝑯 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑺𝟏

𝑯) 𝑷𝟏
𝑳 = 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑺𝟏

𝑳)

𝑶𝑳 = 𝑷𝟎
𝑳 ⋅ 𝑽𝟎 𝑺𝟏

𝑳 = 𝑸𝑳 ⋅ 𝑲𝟏

𝑶𝑯 = 𝑷𝟏
𝑯 ⋅ 𝑽𝟏 𝑺𝟐

𝑯 = 𝑸𝑯 ⋅ 𝑲𝟐

512 cycles

1024 cycles

512 cycles

Tensor
Cores

Tensor
Cores

MUFU

Asynchrony on Blackwell: Pingpong (again)

https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

Summary

Code:
https://github.com/Dao-AILab/flash-attention
https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

Fast and accurate attention optimized for modern hardware

Key algorithmic ideas: asynchrony, low-precision
- Persistent kernels with LPT scheduling for causal attention
- For inference: Split KV (Flash-Decoding) and GQA packing

Upshot: faster training, better models with longer sequences

Summary – FlashAttention

56

https://github.com/Dao-AILab/flash-attention
https://github.com/NVIDIA/cutlass/tree/main/examples/77_blackwell_fmha

	Slide 1
	Slide 2: Motivation: Modeling Long Sequences
	Slide 3: Efficiency is the Bottleneck for Modeling Long Sequences with Attention
	Slide 4: Background: Attention is the Heart of Transformers
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

