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Motivation: Scaling for Dense model is hard

» Background: Compute is the primary challenge of training
massive models.

Model Model Size Hardware | Days to Train
Megatron-LM GPT-2 3.3B 512 V100 GPU 9.2 days
OPT 175B 992 A100 GPU 56 days
MT-NLG 530B 2200 A100 GPU 60 days
PaLM 540B 6144 TPU v4 57 days

Mixture of Experts (MoE) is a promising path for improved model quality without
iIncreasing training cost.



Need for Mixture of Expert Models(MoE)

* Dense model is hard to scale, while MOE scales to larger
models

* MOE pretraining is much faster vs. dense models

 MOE is faster in inference compared to a model with the
same number of parameters



Mixture of Expert Model

* Replacing Transformer’'s FFN with

o multiple small experts, each expert is a neural network (e.g.
FFENs)

o a gating network to choose which expert to activate based on
iInput token

* Not to be confused with Mixture-of-Expert learning, which
'S a learning algorithm to learn the weighted average of
predictor models



Transformer MoE (Switch Transformer)
one token is only passed through one selected FFN
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Transformer MoE (Switch Transformer)

» Gating network (G) learns which experts (E) to send a part
of the input:
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MOE Challenges

* MoE tends to over-fit during fine-
tuning

e |Inference:

o High memory requirements: All
parameters must be loaded into RAM,

o Example: Mixtral 8x7B functions as a
47B parameter model (not 56B), since
only FFN layers act as experts, while
other parameters are shared.




What does an Expert network learn?

Expert specialization | Expert position | Routed tokens

» Encoder experts tend to specialize In w1 e
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Scalable Training of MoE: Expert Parallelism

Encoder Encoder
output (shard 1) output (shard E)
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layer, replace FFN with
Gated Experts e ‘ —

Feed Forward

/—> Add & Norm N\ r-' Add &l Norm
l 1
Feed Forward
FFN

I

) Keep One EXpert On One — (N/2)x _[ (N/2)x
worker device P o N Y [ B

3’

L
[ FFN ] Model- har allel [ FFNE J ]
T T ———— T QJ

Tjﬂt -All Dis pt,_g\_[
(Gating} Gatin

* Replicate all other network

components in all devices A g LT
Multi-Head Devices Multi-Head
Attention Tiiisk Attention
| Device 1 e Device E
Lepikhin et al. GShard: Scaling Giant Models with Conditional Input embeddings + Input embeddings
. . . Positional embeddings Positional embeddings 10
Computation and Automatic Sharding. ICLR 2021. (shard 1) (shard E)




Expert Parallelism + Data/Model Parallelism

How the model weights are split over cores

Data Model Model and Data Expert and Data Expert, Model and Data
Parallelism Parallelism Parallelism Parallelism Parallelism
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How the data is split over cores
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Pyramid-Residual-MoE (in DeepSpeed)

Standard MoE
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PR-MoE: where to put MoE?

N
©

Intuition: In CV, deeper layers learn more
objective specific representations

Question: Are all the MOE layers equally
important? .

Validation loss
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half layers of the model and leave the other halt

of layers identical to dense model

-> Phenomenon: Deeper layers benefit more
from large number of experts

14



PR-MoOE: Intuition 2 ] e« Lo = el o B
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help iImprove generalization.
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PR-MoE: Training System Design

MOE training: Data parallelism + Expert
parallelism

Data

How the model weights are split over cores

Model
Parallelism

Model and Data Expert and Data
Parallelism Parallelism

Expert, Model and Data
Parallelism

Challenge: PR-MoE is Pyramid shaped, =
no optimal expert parallelism 68,

@00
O:0:8:0

parallelize smallest number of experts:

Data

How the datais split over cores

Model
Parallelism

Model and Data Expert and Data
Parallelism Parallelism

Expert, Model and Data
Parallelism

multiple experts per GPU, reduced

batch size and increased memory
requirement

.........................

parallelize largest number of experts:
load balancing problem
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PR-MoE: Multi-expert and Multi-data Parallelism Support

Provide flexible training for different parts of the model with different expert and
data parallelism degree

- MoE layer API allows different number of experts and a different expert
parallelism degree for each MoE layer.
ep_size="desired expert-parallel world size"

deepspeed.moe.layer.MoE(hidden_size=input_dim, expert=ExpertModule(), num_experts=[..],
ep_size=ep_size, use_residual=True)
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Benefits of PR-MOE

» extend Mok to decoder-only models

* Reduced model size and improved parameter efficiency
with Pyramid-Residual-MoE (PR-MoE) Architecture and
Mixture-of-Students (MoS)

« Faster and cheaper Mok inference at scale
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DeepSpeed-MOE Inference System

* Mok inference performance depends on:

o overall model size
o overall memory bandwidth

* DeepSpeed-MOE: Optimize the inference system by
maximizing the achievable memory bandwidth

» Performance
o 7.3x better latency compared to baseline MOE system

o 4.5x faster and 9x cheaper MoE inference compared to quality
equivalent dense models

19



MoE Inference performance

» Best Case: Active only single expert at each MoE layer during
inference, which is equivalent to dense model.

« Worst Case: Active entire MOE model’'s parameters, making it
challenging to achieve short latency and high throughput.

* Optimization:
o group and route all tokens with the same critical data path together to reduce
data access per device and achieve maximum aggregate bandwidth;
o Optimize communication scheduling with parallelism coordination;

o Optimize transformer and MoE related kernels to improve per-device
performance;

20



Data Parallelism and Tensor-slicing (Non-Expert Params)

Total GPUs = 16, Total Experts = 8
expert-slicing degree = 2, expert-parallel degree = 8 / ‘ Expert-parallelism -\.l
tensor-slicing degree = 4, data-parallel degree = 4 1 Expert-slicing Expert-slicing
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Input

ED
(GPU 13)
* A
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e T
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Figure 7: DS-MoE design that embraces the complexity of multi-dimensional parallelism for
different partitions (expert and non-expert) of the model.

Data-parallelism

Data-parallelism by creating non-expert
parameter replicas processing different
batches across nodes

Tensor-slicing

tensor-slicing within a node allowing for
hundreds of billions of non-expert parameters
by leveraging aggregate GPU memory, while
also leveraging the aggregate GPU memory
bandwidth across all GPUs within a node
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Expert Parallelism and Expert-slicing (Expert Params)

Total GPUs = 16, Total Experts = 8

expert-slicing degree = 2, expert-parallel degree = 8
tensor-slicing degree = 4, data-parallel degree = 4

Output

I

MoE Transformer Layer

Expert Parameters (e.g. MLP) |

I

Non-expert Parameters (e.g. Attention)
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Figure 7: DS-MoE design that embraces the complexity of multi-dimensional parallelism for
different partitions (expert and non-expert) of the model.

Expert Parallelism

Group all input tokens assigned to the same
experts under the same critical data path, and
parallelize processing of the token groups with
different critical paths among different devices
using expert parallelism.

Expert Slicing

Partitions the expert parameters
horizontally/vertically across multiple GPUs.
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Optimized All-to-All Communication

Expert parallelism requires all-to-all communication
between all expert parallel devices; the latency increases
inearly with the increase in devices

custom communication interface using Microsoft SCCL
Two optimizations:

hierarchical all-to-all communication pattern: reduces the
communication hops

parallelism-coordinated communication optimization:
schedules communications based on the model's
parallelism strategy to minimize overhead.

23



Hierarchical All-to-all for communication

Proposed Hierarchical AlltoAll Design
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Highly Optimized Transformer and MoE
Kernels

* Transformer: Leveraging DeepSpeed inference kernels for
transformer layers

MOE Specific Optimizations:

o Optimizing the gating mechanisms
» fuse the gating function into a single kernel
» dense token-to-expert mapping table

* Result: over ox reduction in Mok Kernel related latency

26



MQOE Training Loss and Throughput

Token-wise validation loss curves for dense and MoE LLMs

Validation loss

3.0

2.8

==+ 350M dense
— 350M+MoE-128
—=- 1.3B dense
= 1.2B+MoE-128
6.7B dense

60B

120B 180B
Tokens

240B

3008

Training Throughput gain/

samples per Cost Reduction
sec
6.7B dense 70 1x

1.3B+MoE-128 372 5x

Training throughput (on 128
A100 GPUs) comparing Mok
based model vs dense model
that can both achieve the
same model quality.

28



DeepSpeed MOE Inference Performance

Latency (ms)

52 Billion (1.3B+MoE-128)

8 GPUs 16 GPUs
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-8 Throughput (PyTorch)
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Throughput (DeepSpeed)
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300
200
100

Throughput (#tokens-per-second) per GPU
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DeepSpeed MOE Inference Performance

107 Billion 349 Billion 1 Trillion 2 Trillion
(2.48+MoE-128) (88+MoE-128) (24B+MoE-128) (478+MoE-128)
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PyTorch  DeepSpeed PyTorch  DeepSpeed PyTorch  DeepSpeed PyTorch  DeepSpeed

BN | atency === Throughput

Figure 11: Latency and throughput improvement offered by DeepSpeed-MoE (Optimized) over
PyTorch (Baseline) for different MoE model sizes (107 billion to 2 trillion parameters). We
use 128 GPUs for all configurations for baseline, and 128/256 GPUs for DeepSpeed-MoE (256
GPUs for the trillion-scale models). The throughputs shown here are per GPU and should be
multiplied by number of GPUs to get the aggregate throughput of the cluster.
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MOE Zero-shot Performance

/ero-shot evaluation results on different benchmarks.

o Hx lower training cost to same accuracy using MoE
e 8X more parameters to same accuracy using Mok

Modelsize = LAMBADA: PIQA: BoolQ: RACE-h: TriviaQA: WebQs:

completion commonsense reading reading question question
prediction reasoning comprehension comprehension answering answering

Dense NLG:

(1) 350M 350M 52.03 69.31 53.64 31.77 3.21 1.57

(2) 1.3B 1.3B 63.65 73.39 63.39 35.60 10.05 3.25

(3) 6.7B

andard Mok NLG:
(4) 350M+MoE-128 13B 62.70 74.59 60.46 35.60 16.58 5.17
5) 1.3B+MoE-128 69.84 76.71 64.92 38.09 31.29 7.19
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PR-MoE Performance (accuracy)

350M+PRMoE-32/64 vs 350M+MoE-128, 1.3B+PR-MoE-64/128 vs
1.3B+MoE128

comparable accuracy, 33% parameters for 350M, 60% parameters for 1.3B

Performance of Models on Different Tasks

L
0

o000

32



Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Scalable training: expert parallelism (GShard)

* Deepspeed MoE Improvement
o Pyramid-Residual MoE
o Scaling MOE inference in Deepspeed
o Performance

=« Deepseek MoE (V3 model)
o code walkthrough

34



DeepSeek MoE

* Fine-grained experts: each
FFEN Is split to k smaller
experts, total KN (N=original
experts)

* shared experts + routing
experts

* topk weighted average of
routing experts (activating
kM)

Output Hidden

------------------

o BB 8§ 8 _F _§ & 8§ _§ B 0 0§ § [} |




DeepSeek-MoE Benefits

e Performance Gains:

o DeepSeekMoE 2B approaches the performance of its dense
counterpart with the same number of total parameters.

o DeepSeekMoE-16B achieves performance comparable to
LLaMAZ2 7B, using only ~40% of the computations.
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DeepSeek V3 MoE (670B)

Vocab: 129,280

dimension=7168 T

num layer=61 |

num dense layer=3 (lowest) D

num head = 128 ~

dim ffn (inter dim)=18432 / ? ? ?
moe dlm — 2048 E)((gﬁ;’ﬁeﬂ;N Exgert Exgert Exgert Exgert Exgert Exgert Exgert E)éggrt
num shared experts = 1 o N K -
num routed experts = 256 — k=3
num activated experts = 8 / t

num expert group=8 Multihead Attention (MLA) '

num limited group=4 ' i :

TopK(Softmax(h, - W), 8)
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FFNgwigru(x) = (SWiSh(x - W)O(x - Wz)) - Wi
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py



https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Load Balancing in Deepseek MoE

« Expert-Level Balance Loss (to avoid routing collapse to experts)

#Hexperts
LExpBal = g E fiP;
=1
#experts #tokens to experti 1 #tokens
fi = : ' i = e t=1 Sit
#activated_experts #tokens #tokens ’

* Device-level balance loss (balance computation across dev)/
#groups

Lpevpal = @2 z f]P]
j=1

fi = avg f in group j) P; = sumof Pin group j

routing weight
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Deepseek V3 MoE Code Walkthrough

 https://github.com/deepseek-ai/DeepSeek-
V3/blob/main/inference/model.py
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https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Deepspeed MoE Code Example

1mport torch

import deepspeed

import deepspeed.utils.groups as groups
from deepspeed.moe.layer import MoE

WORLD_SIZE = 4
EP_WORLD_SIZE = 2
EXPERTS = &

fc3 = torch.nn.Linear(84, 84)
fc3 = MoEChidden_size=84, expert=self.fc3, num_experts=EXPERTS, ep_size=EP_WORLD_SIZE, k=1)
fc4 = torch.nn.Linear(84, 10)

https://www.deepspeed.ai/tutorials/mixture-of-experts/




Deepspeed MoE Code Example

17 v class MoE(nn.Module):
"""Tnitialize an MoE layer.

20 Arguments:

21 hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.

22 expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).

23 num_experts (int, optional): default=1, the total number of experts per layer.

24 ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.

25 k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.

26 capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.

27 eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.

28 min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.

29 use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer.
30 noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'litter', 'RSample' or 'None'.

31 drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).
32 use_rts (bool, optional): default=True, whether to use Random Token Selection.

33 use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
34 enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts
top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py




Deepspeed MoE Code Example

experts = Experts(expert, self.num_local_experts, self.expert_group_name)
self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor,
min_capacity, noisy_gate_policy, drop_tokens, use_rts, None,
top2_2nd_expert_sampling),
experts,
self.expert_group_name,
self.ep_size,
self.num_local_experts,
use_tutel=use_tutel)
if self.use_residual:
self.mlp = expert
# coefficient is used for weighted sum of the output of expert and mlp
self.coefficient = nn.Linear(hidden_size, 2)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py




Deepspeed MoE Code Example

class Experts(nn.Module):

def __init__ (self, expert: nn.Module, num_local_experts: int = 1, expert_group_name: Optional[str] = None) -> None:
super(Experts, self).__init_ ()

self.deepspeed_experts = nn.ModuleList([copy.deepcopy(expert) for _ in range(num_local_experts)])
self.num_local_experts = num_local_experts

# TODO: revisit allreduce for moe.gate...
for expert in self.deepspeed_experts:
# TODO: Create param groups to handle expert + data case (e.g. param.group = moe_group)
for param in expert.parameters():
param.allreduce = False
param.group_name = expert_group_name

forward(self, inputs: torch.Tensor) -> torch.Tensor:
chunks = inputs.chunk(self.num_local_experts, dim=1)
expert_outputs: List[torch.Tensor] = []

for chunk, expert in zip(chunks, self.deepspeed_experts):
out = expert(chunk)
if isinstance(out, tuple):
out = out[@] # Ignore the bias term for now
expert_outputs += [out]

return torch.cat(expert_outputs, dim=1)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py



Summary

o LLM Mixture-of-Expert Model
o Instead of a single dense FFN, using multiple FFNs (experts)
o Routing network to select one/multiple experts
o Shared-routed experts (deepspeed-MOE, deepseek MOE)
o a few dense layers, then MOE (deepseek MOE)

« Scalable training/inference
o expert parallelism: split experts and replicate non-expert (GShard)
o all-to-all communication for expert output
o load balancing: grouping and avoid collapse (deepseek)
o optimized kernel for MoE
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* Rajpohandari et al (2022). DeepSpeed-MoE: Advancing
Mixture-of-Experts Inference and Training to Power Next-
Generation Al Scale.

» Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate
Expert Specialization in Mixture-of-Experts Language
Models.
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