
Large models with Mixture-of-

Experts

Lei Li



• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Scalable training: expert parallelism (GShard)

• Deepspeed MoE Improvement

o Pyramid-Residual MoE

o Scaling MOE inference in Deepspeed

o Performance

• Deepseek MoE (V3 model)

o code walkthrough 2

Outline



• Background: Compute is the primary challenge of training 

massive models.

Motivation: Scaling for Dense model is hard

Mixture of Experts (MoE) is a promising path for improved model quality without 

increasing training cost.

3



• Dense model is hard to scale, while MOE scales to larger 

models

• MOE pretraining is much faster vs. dense models

• MOE is faster in inference compared to a model with the 

same number of parameters

Need for Mixture of Expert Models(MoE)

4



• Replacing Transformer’s FFN with 

omultiple small experts, each expert is a neural network (e.g. 

FFNs)

o a gating network to choose which expert to activate based on 

input token

• Not to be confused with Mixture-of-Expert learning, which 

is a learning algorithm to learn the weighted average of 

predictor models

Mixture of Expert Model

5



Transformer MoE (Switch Transformer)

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.

one token is only passed through one selected FFN

6



• Gating network (G) learns which experts (E) to send a part 

of the input:

Transformer MoE (Switch Transformer)

Top-k gating:

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.
7



• MoE tends to over-fit during fine-

tuning

• Inference:

o High memory requirements: All 

parameters must be loaded into RAM, 

o Example: Mixtral 8x7B functions as a 

47B parameter model (not 56B), since 

only FFN layers act as experts, while 

other parameters are shared.

MOE Challenges

8



• Encoder experts tend to specialize in 

token groups or shallow concepts 

(e.g., punctuation, proper nouns).

• Decoder experts exhibit less 

specialization.

• In multilingual setups, experts do not 

specialize in specific languages due 

to token routing and load balancing.

What does an Expert network learn?

9



• For every other Transformer 

layer, replace FFN with 

Gated Experts

• Keep one Expert on one 

worker device

• Replicate all other network 

components in all devices

10

Scalable Training of MoE: Expert Parallelism

Lepikhin et al. GShard: Scaling Giant Models with Conditional 

Computation and Automatic Sharding. ICLR 2021.



11

Expert Parallelism + Data/Model Parallelism

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.



• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Scalable training: expert parallelism (GShard)

• Deepspeed MoE Improvement

o Pyramid-Residual MoE

o Scaling MOE inference in Deepspeed

o Performance

• Deepseek MoE (V3 model)

o code walkthrough 12

Outline



Pyramid-Residual-MoE (in DeepSpeed)

Residual-MOE:

(one) shared expert and

(one/multiple) routing experts 

Pyramid-MOE:

last two layers 2x 

routing experts 

13



Intuition: In CV, deeper layers learn more 

objective specific representations

Question:  Are all the MOE layers equally 

important?

Experiment: Put MoE layers in the (first/second) 

half layers of the model and leave the other half 

of layers identical to dense model

-> Phenomenon: Deeper layers benefit more 

from large number of experts

PR-MoE: where to put MoE?

14



More experts (more memory) and more 

expert capacity (higher latency) can 

help improve generalization.

Intuition: Extra experts can help correct 

the “representation” of the first one

Experiment:  doubling the capacity 

(Top2) vs fixing one expert and varying 

the second expert (Residual)

-> Phenomenon: on par generalization, 

training Residual-MoE is 10% faster

PR-MoE: Intuition 2

15



• MOE training: Data parallelism + Expert 

parallelism

• Challenge: PR-MoE is Pyramid shaped, 

no optimal expert parallelism 

• parallelize smallest number of experts: 

multiple experts per GPU, reduced 

batch size and increased memory 

requirement

• parallelize largest number of experts: 

load balancing problem

PR-MoE: Training System Design

16



Provide flexible training for different parts of the model with different expert and 

data parallelism degree

- MoE layer API allows different number of experts and a different expert 

parallelism degree for each MoE layer.

ep_size="desired expert-parallel world size"

deepspeed.moe.layer.MoE(hidden_size=input_dim, expert=ExpertModule(), num_experts=[..], 
ep_size=ep_size, use_residual=True)

PR-MoE: Multi-expert and Multi-data Parallelism Support

MoE Layer

MoE Layer

…

E6

1

E6

2

E6

3

E6

4
E1 E2 E3 E4

E1 E2
E3

1

E3

2

Device 0 Device 16

64 experts

32 experts
. . .

input

output

17



• extend MoE to decoder-only models

• Reduced model size and improved parameter efficiency 

with Pyramid-Residual-MoE (PR-MoE) Architecture and 

Mixture-of-Students (MoS)

• Faster and cheaper MoE inference at scale

Benefits of PR-MOE

18



• MoE inference performance depends on:

o overall model size

o overall memory bandwidth

• DeepSpeed-MOE: Optimize the inference system by  

maximizing the achievable memory bandwidth

• Performance

o 7.3x better latency compared to baseline MOE system

o 4.5x faster and 9x cheaper MoE inference compared to quality 

equivalent dense models
19

DeepSpeed-MOE Inference System



• Best Case: Active only single expert at each MoE layer during 

inference, which is equivalent to dense model.

• Worst Case: Active entire MOE model’s parameters, making it 

challenging to achieve short latency and high throughput.

• Optimization: 

o group and route all tokens with the same critical data path together to reduce 

data access per device and achieve maximum aggregate bandwidth;

o Optimize communication scheduling with parallelism coordination;

o Optimize transformer and MoE related kernels to improve per-device 

performance;
20

MoE inference performance



Data Parallelism and Tensor-slicing (Non-Expert Params)

Data-parallelism 

Data-parallelism by creating non-expert 

parameter replicas processing different 

batches across nodes 

Tensor-slicing
tensor-slicing within a node allowing for 

hundreds of billions of non-expert parameters 

by leveraging aggregate GPU memory, while 

also leveraging the aggregate GPU memory 

bandwidth across all GPUs within a node

21



Expert Parallelism and Expert-slicing (Expert Params)

Expert Parallelism

Group all input tokens assigned to the same 

experts under the same critical data path, and 

parallelize processing of the token groups with 

different critical paths among different devices 

using expert parallelism.

Expert Slicing

Partitions the expert parameters 

horizontally/vertically across multiple GPUs. 

22



• Expert parallelism requires all-to-all communication 

between all expert parallel devices; the latency increases 

linearly with the increase in devices

• custom communication interface using Microsoft SCCL 

• Two optimizations:

- hierarchical all-to-all communication pattern: reduces the 

communication hops

- parallelism-coordinated communication optimization: 

schedules communications based on the model's 

parallelism strategy to minimize overhead.

Optimized All-to-All Communication

23



Hierarchical All-to-all for communication

24

Implemented a hierarchical all-to-all as a two-

step process with a data-layout transformation, 

followed by an intra-node all-to-all, followed by 

a second data-layout transformation, and a 

final inter-node all-to-all.

Reduces the communication hops from O(p) to 

O(G+ p/G)

G: number of GPUs in a node;

p: total number of GPUs



• Transformer: Leveraging DeepSpeed inference kernels for 

transformer layers

• MOE Specific Optimizations:

oOptimizing the gating mechanisms
▪ fuse the gating function into a single kernel

▪ dense token-to-expert mapping table

• Result: over 6x reduction in MoE Kernel related latency

26

Highly Optimized Transformer and MoE 

Kernels



Token-wise validation loss curves for dense and MoE LLMs

MOE Training Loss and Throughput

Training throughput (on 128 

A100 GPUs) comparing MoE 

based model vs dense model 

that can both achieve the 

same model quality.
28



DeepSpeed MOE Inference Performance

29



DeepSpeed MOE Inference Performance

30



Zero-shot evaluation results on different benchmarks. 

● 5x lower training cost to same accuracy using MoE

● 8x more parameters to same accuracy using MoE

MOE Zero-shot Performance

31



350M+PRMoE-32/64 vs 350M+MoE-128,  1.3B+PR-MoE-64/128 vs 

1.3B+MoE128

comparable accuracy, 33% parameters for 350M, 60% parameters for 1.3B

PR-MoE Performance (accuracy)

32



• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Scalable training: expert parallelism (GShard)

• Deepspeed MoE Improvement

o Pyramid-Residual MoE

o Scaling MOE inference in Deepspeed

o Performance

• Deepseek MoE (V3 model)

o code walkthrough 34

Outline



• Fine-grained experts: each 

FFN is split to k smaller 

experts, total kN (N=original 

experts) 

• shared experts + routing 

experts

• topk weighted average of 

routing experts (activating 

kM)

DeepSeek MoE

36

Softmax(h*e)



• Performance Gains:

o DeepSeekMoE 2B approaches the performance of its dense 

counterpart with the same number of total parameters.

o DeepSeekMoE-16B achieves performance comparable to 

LLaMA2 7B, using only ~40% of the computations.

37

DeepSeek-MoE Benefits



Vocab: 129,280

dimension=7168

num layer=61

num dense layer=3 (lowest)

num head = 128

dim ffn (inter dim)=18432

moe dim = 2048

num shared experts = 1

num routed experts = 256

num activated experts = 8

num expert group=8

num limited group=4

38

DeepSeek V3 MoE (670B)

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py 

Multihead Attention (MLA)

Expert FFN
(shared)

FFN𝑆𝑤𝑖𝐺𝐿𝑈 𝑥 = 𝑆𝑤𝑖𝑠ℎ 𝑥 ⋅ 𝑊1 ⨀ 𝑥 ∙ 𝑊2 ⋅ 𝑊3

Router

Expert 
2

Expert 
1

Expert 
3

Expert 
4

Expert 
5

Expert 
6

Expert 
7

Expert 
256

k=8

⨂ ⨂ ⨂

⨁

TopK Softmax ℎ𝑡 ⋅ 𝑊 , 8

h

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py


• Expert-Level Balance Loss (to avoid routing collapse to experts)

𝐿𝐸𝑥𝑝𝐵𝑎𝑙 = 𝛼1 ෍

𝑖=1

#experts

𝑓𝑖𝑃𝑖

𝑓𝑖 =
#experts

#activated_experts
∙

#tokens to expert 𝑖

#tokens
                    𝑃𝑖 =

1

#tokens
σ𝑡=1

#tokens 𝑠𝑖,𝑡

• Device-level balance loss (balance computation across dev)

𝐿𝐷𝑒𝑣𝐵𝑎𝑙 = 𝛼2 ෍

𝑗=1

#groups

𝑓𝑗𝑃𝑗

𝑓𝑗 = 𝑎𝑣𝑔 𝑓 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗)                         𝑃𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑃 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗

39

Load Balancing in Deepseek MoE

routing weight



• https://github.com/deepseek-ai/DeepSeek-

V3/blob/main/inference/model.py 

45

Deepseek V3 MoE Code Walkthrough

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py


Deepspeed MoE Code Example

https://www.deepspeed.ai/tutorials/mixture-of-experts/
46



Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py 47



Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py
48



Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
49



• LLM Mixture-of-Expert Model

o Instead of a single dense FFN, using multiple FFNs (experts)

o Routing network to select one/multiple experts

o Shared-routed experts (deepspeed-MOE, deepseek MOE) 

o a few dense layers, then MOE (deepseek MOE)

• Scalable training/inference

o expert parallelism: split experts and replicate non-expert  (GShard)

o all-to-all communication for expert output

o load balancing: grouping and avoid collapse (deepseek)

o optimized kernel for MoE

50

Summary



• Rajbhandari et al (2022). DeepSpeed-MoE: Advancing 

Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. 

• Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate 

Expert Specialization in Mixture-of-Experts Language 

Models. 

51

Reference


	Slide 1: Large models with Mixture-of-Experts
	Slide 2: Outline
	Slide 3:  Motivation: Scaling for Dense model is hard
	Slide 4: Need for Mixture of Expert Models(MoE) 
	Slide 5: Mixture of Expert Model
	Slide 6: Transformer MoE (Switch Transformer) 
	Slide 7: Transformer MoE (Switch Transformer) 
	Slide 8:  MOE Challenges 
	Slide 9:  What does an Expert network learn? 
	Slide 10: Scalable Training of MoE: Expert Parallelism
	Slide 11: Expert Parallelism + Data/Model Parallelism
	Slide 12: Outline
	Slide 13: Pyramid-Residual-MoE (in DeepSpeed)
	Slide 14: PR-MoE: where to put MoE?
	Slide 15: PR-MoE: Intuition 2
	Slide 16: PR-MoE: Training System Design
	Slide 17: PR-MoE: Multi-expert and Multi-data Parallelism Support
	Slide 18: Benefits of PR-MOE
	Slide 19: DeepSpeed-MOE Inference System
	Slide 20: MoE inference performance
	Slide 21: Data Parallelism and Tensor-slicing (Non-Expert Params)
	Slide 22: Expert Parallelism and Expert-slicing (Expert Params)
	Slide 23: Optimized All-to-All Communication
	Slide 24: Hierarchical All-to-all for communication
	Slide 26: Highly Optimized Transformer and MoE Kernels
	Slide 28: MOE Training Loss and Throughput
	Slide 29: DeepSpeed MOE Inference Performance
	Slide 30: DeepSpeed MOE Inference Performance
	Slide 31: MOE Zero-shot Performance
	Slide 32: PR-MoE Performance (accuracy)
	Slide 34: Outline
	Slide 36: DeepSeek MoE 
	Slide 37: DeepSeek-MoE Benefits 
	Slide 38: DeepSeek V3 MoE (670B)
	Slide 39: Load Balancing in Deepseek MoE
	Slide 45: Deepseek V3 MoE Code Walkthrough
	Slide 46: Deepspeed MoE Code Example
	Slide 47: Deepspeed MoE Code Example
	Slide 48: Deepspeed MoE Code Example
	Slide 49: Deepspeed MoE Code Example
	Slide 50: Summary
	Slide 51: Reference

