
11868/11968

Large models with Mixture-of-

Experts
Lei Li

• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough

3

Outline

• Background: Compute is the primary challenge of training

massive models.

Motivation: Scaling for Dense model is hard

Sparse model is a promising path for improved model quality

without increasing training cost, e.g. MOE
4

• Dense model is hard to scale, while sparse model scales to

larger models

• Mixture-of-Expert is one type of sparse model

o pretraining is much faster vs. dense models

oMOE is faster in inference compared to a model with the same

number of parameters

Need for Sparse Model

5

• Replacing Transformer’s FFN with

omultiple small experts, each expert is a neural network (e.g.

FFNs)

o a gating network to choose which expert to activate based on

input token

• Not to be confused with Mixture-of-Expert learning, which

is a learning algorithm to learn the weighted average of

predictor models

Transformer Mixture of Expert Model

6

Transformer MoE (Switch Transformer)

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.

one token is only passed through one selected FFN

7

• Gating network (G) learns which experts (E) to send a part

of the input:

Transformer MoE (Switch Transformer)

Top-k gating:

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.
8

9

Shared vs. Routed Experts

Multihead Attention

Expert FFN
(shared)

Router

Expert
2

Expert
1

Expert
3

Expert
N

⨂

⨁

Softmax TopK ℎ𝑡 ⋅ 𝑊

h

always

pass

through

one

fixed

expert

FFN

Routed experts: calculated

token-specific knowledge.

First from Deepspeed-

MoE. later in deepseek

MoE

Shared expert:

calculating common

knowledge

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale.

10

Activated Experts Differ across layers

Attention

Expert
2

Expert
1

Expert
3

Expert
N

Attention

Expert
2

Expert
1

Expert
3

Expert
N

“red”

Attention

Expert
2

Expert
1

Expert
3

Expert
N

Attention

Expert
2

Expert
1

Expert
3

Expert
N

“fox”

• How many parameters in Mixtral 8x7B model?

• 56B?

• 47B!

o since only FFN layers act are experts, the other parameters

(attention, embedding) are shared

11

Parameters of MoE

Danger of MoE over-fitting to small data

12

• Encoder experts tend to specialize in

token groups or shallow concepts

(e.g., punctuation, proper nouns).

• Decoder experts exhibit less

specialization.

• In multilingual setups, experts do not

specialize in specific languages due

to token routing and load balancing.

What does an Expert network learn?

13

• KeepTop1 with 3 routing experts (finding linear boundaries

among expert centroids)

14

Geometric Interpretation of Expert Routing

• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough

15

Outline

• Keep one Expert on one

worker device

• Replicate all other network

components in all devices

• Need fast all-to-all

communication

16

Training of MoE: Expert Parallelism

Lepikhin et al. GShard: Scaling Giant Models with Conditional

Computation and Automatic Sharding. ICLR 2021.

Training MoE: Expert Parallelism

17

Attention

Router

Expert 1
FFN

GPU1

Attention

Router

Expert 2
FFN

GPU2

Attention

Router

Expert 3
FFN

GPU3

Attention

Router

Expert 4
FFN

GPU4

Embedding Embedding Embedding Embedding

Replicate

across

device

Split

across

device
all-to-all

dispatch

1

2

3

4

all-to-all

original dev

Token Computation Path in MoE

18red fox sits the weather is

layer 1

KV-caches

layer 2

KV-caches

Attention

Router

Expert 1
FFN

GPU1

Embedding

Attention

Router

Expert 1
FFN

layer 1

KV-caches

layer 2

KV-caches

Attention

Router

Expert 2
FFN

GPU2

Embedding

Attention

Router

Expert 2
FFN

batch1: batch2:

• For every other layer, use MoE

19

Gshard’s Interleaving Expert

• Expert-Level Balance Loss (to avoid routing collapse to experts)

𝐿𝐸𝑥𝑝𝐵𝑎𝑙 = 𝛼1𝑀 ෍

𝑖=1

#experts

𝑓𝑖𝑃𝑖

𝑓𝑖 =
#tokens to expert 𝑖

#tokens
 𝑃𝑖 =

1

#tokens
σ𝑡=1

#tokens 𝑠𝑖,𝑡

M: num of experts

20

Load Balancing in MoE Training

routing weight

• MoE inference performance depends on:

o overall model size

o how many activated experts

o overall memory bandwidth

• Default implementation:

o Keep all experts in GPU memory (need large mem)

22

MOE Inference

• System Design Goal: minimize the critical data path per device,

maximize the achievable aggregate memory bandwidth

• group and route all tokens with the same critical data path together

to reduce data access per device and achieve maximum aggregate

bandwidth;

• Optimize communication scheduling with parallelism coordination

• Optimize transformer and MoE related kernels to improve per-device

performance

23

Optimizing MoE inference

Expert Parallelism and Tensor-Parallelism

Expert Parallelism / Expert slicing

Group all input tokens assigned to the same

experts under the same critical data path, and

parallelize processing of the token groups with

different critical paths among different devices

using expert parallelism.

Tensor Parallelism / Tensor slicing:

Partition the non-expert parameters (Attention)

across devices (usually within a node)

Further with Data parallelism

24Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale.

• MOE Specific Optimizations:

o fuse the gating function into a single kernel

o dense token-to-expert mapping table

• Result: over 6x reduction in MoE Kernel related latency

25

Optimizing MoE Kernels

• Expert parallelism requires all-to-all communication

between all expert parallel devices; the latency increases

linearly with the increase in devices

• Optimization:

- hierarchical all-to-all communication pattern: reduces the

communication hops

- parallelism-coordinated communication optimization: schedules

communications based on the model's parallelism strategy to

minimize overhead.

Opportunity for Optimized All-to-All

Communication

26Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale.

Token-wise validation loss curves for dense and MoE LLMs

MOE Training Loss and Throughput

Training throughput (on 128

A100 GPUs) comparing MoE

based model vs dense model

that can both achieve the

same model quality.
27Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale.

DeepSpeed MOE Inference Performance

28Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale.

• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough

29

Outline

• Fine-grained experts: each

FFN is split to k smaller

experts, total kN (N=original

experts)

• shared experts + routing

experts

• topk weighted average of

routing experts (activating

kM)

DeepSeek MoE

31

Softmax(h*e)

Vocab: 129,280

dimension=7168

num layer=61

num dense layer=3 (lowest)

num head = 128

dim ffn (inter dim)=18432

moe dim = 2048

num shared experts = 1

num routed experts = 256

num activated experts = 8

num expert group=8

num limited group=4

33

DeepSeek V3 MoE (670B)

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Multihead Attention (MLA)

Expert FFN
(shared)

FFN𝑆𝑤𝑖𝐺𝐿𝑈 𝑥 = 𝑆𝑤𝑖𝑠ℎ 𝑥 ⋅ 𝑊1 ⨀ 𝑥 ∙ 𝑊2 ⋅ 𝑊3

Router

Expert
2

Expert
1

Expert
3

Expert
4

Expert
5

Expert
6

Expert
7

Expert
256

k=8

⨂ ⨂ ⨂

⨁

TopK Softmax ℎ𝑡 ⋅ 𝑊 , 8

h

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

• Expert-Level Balance Loss (to avoid routing collapse to experts)

𝐿𝐸𝑥𝑝𝐵𝑎𝑙 = 𝛼1 ෍

𝑖=1

#experts

𝑓𝑖𝑃𝑖

𝑓𝑖 =
#experts

#activated_experts
∙

#tokens to expert 𝑖

#tokens
 𝑃𝑖 =

1

#tokens
σ𝑡=1

#tokens 𝑠𝑖,𝑡

• Device-level balance loss (balance computation across dev)

𝐿𝐷𝑒𝑣𝐵𝑎𝑙 = 𝛼2 ෍

𝑗=1

#groups

𝑓𝑗𝑃𝑗

𝑓𝑗 = 𝑎𝑣𝑔 𝑓 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗) 𝑃𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑃 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗

34

Load Balancing in Deepseek MoE

routing weight

• DeepEP is a communication library tailored for Mixture-of-

Experts (MoE) and expert parallelism (EP).

o https://github.com/deepseek-ai/DeepEP

• Expert Parallelism Load Balancer (EPLB)

o https://github.com/deepseek-ai/EPLB

35

Deepseek Libraries to Accelerate MOE

https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB

• https://github.com/deepseek-ai/DeepSeek-

V3/blob/main/inference/model.py

36

Deepseek V3 MoE Code Walkthrough

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Deepspeed MoE Code Example

https://www.deepspeed.ai/tutorials/mixture-of-experts/
37

Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py 38

Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py
39

Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
40

• LLM Mixture-of-Expert Model

o Instead of a single dense FFN, using multiple FFNs (experts)

o Routing network to select one/multiple experts

o Shared-routed experts (deepspeed-MOE, deepseek MOE)

o a few dense layers, then MOE (deepseek MOE)

• Scalable training/inference

o expert parallelism: split experts and replicate non-expert (GShard)

o all-to-all communication for expert output

o load balancing: grouping and avoid collapse (deepseek)

o optimized kernel for MoE

41

Summary

• Rajbhandari et al (2022). DeepSpeed-MoE: Advancing

Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale.

• Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate

Expert Specialization in Mixture-of-Experts Language

Models.

42

Reference

	Slide 1: 11868/11968 Large models with Mixture-of-Experts
	Slide 3: Outline
	Slide 4: Motivation: Scaling for Dense model is hard
	Slide 5: Need for Sparse Model
	Slide 6: Transformer Mixture of Expert Model
	Slide 7: Transformer MoE (Switch Transformer)
	Slide 8: Transformer MoE (Switch Transformer)
	Slide 9: Shared vs. Routed Experts
	Slide 10: Activated Experts Differ across layers
	Slide 11: Parameters of MoE
	Slide 12: Danger of MoE over-fitting to small data
	Slide 13: What does an Expert network learn?
	Slide 14: Geometric Interpretation of Expert Routing
	Slide 15: Outline
	Slide 16: Training of MoE: Expert Parallelism
	Slide 17: Training MoE: Expert Parallelism
	Slide 18: Token Computation Path in MoE
	Slide 19: Gshard’s Interleaving Expert
	Slide 20: Load Balancing in MoE Training
	Slide 22: MOE Inference
	Slide 23: Optimizing MoE inference
	Slide 24: Expert Parallelism and Tensor-Parallelism
	Slide 25: Optimizing MoE Kernels
	Slide 26: Opportunity for Optimized All-to-All Communication
	Slide 27: MOE Training Loss and Throughput
	Slide 28: DeepSpeed MOE Inference Performance
	Slide 29: Outline
	Slide 31: DeepSeek MoE
	Slide 33: DeepSeek V3 MoE (670B)
	Slide 34: Load Balancing in Deepseek MoE
	Slide 35: Deepseek Libraries to Accelerate MOE
	Slide 36: Deepseek V3 MoE Code Walkthrough
	Slide 37: Deepspeed MoE Code Example
	Slide 38: Deepspeed MoE Code Example
	Slide 39: Deepspeed MoE Code Example
	Slide 40: Deepspeed MoE Code Example
	Slide 41: Summary
	Slide 42: Reference

