LLM Sys
11868/11968
Large models with Mixture-of-

Experts
Lei Li

Carnegie Mellon University
Language Technologies Institute

Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

 Training and inference for MoE
o Expert parallelism (GShard)

* Deepseek MoE (V3 model)

o code walkthrough

Motivation: Scaling for Dense model is hard

» Background: Compute is the primary challenge of training

massive models.

Model Model Size | Hardware | Days to Train
Megatron-LM GPT-2 8.3B 512 V100 GPU 9.2 days
OPT 175B 992 A100 GPU 56 days
MT-NLG 530B 2200 A100 GPU 60 days
PaLM 540B 6144 TPU v4 57 days

Sparse model is a promising path for improved model quality
without increasing training cost, e.g. MOE

Need for Sparse Model

* Dense model is hard to scale, while sparse model scales to
larger models

« Mixture-of-Expert is one type of sparse model
o pretraining is much faster vs. dense models

o MOE is faster in inference compared to a model with the same
number of parameters

Transformer Mixture of Expert Model

* Replacing Transformer’'s FFN with

o multiple small experts, each expert is a neural network (e.g.
FFENs)

o a gating network to choose which expert to activate based on
iInput token

* Not to be confused with Mixture-of-Expert learning, which
'S a learning algorithm to learn the weighted average of
predictor models

Transformer MoE (Switch Transformer)
one token is only passed through one selected FFN

2 valLl 11l 1 1] IZHEEEEEN
- ¢ 2 ’
e 2 - P[Add + Normalize]1
L 4 A A

; a K g & />é< ------ . \
[s Norreize] :: FFN:}}FN: [FFN::HFFNJ FFN 1 {sz][sms]{sma] ::

T 54 S NG e -
r _ 2 ‘ p=08

Switching FFN Layer ‘ P =005

* ‘A ‘l L

[Add + NTormalize] k _ R°A“‘°' Router /
Se'“‘?e"m" - -[Add + Normalize]-
~
x . t t
e : Self-Attention
™ S - \ T t J
p T Positional Positional ?
S embedding embedding
~
111111 X2
More Parameters

Fedus et al. Switch Transformers: Scaline to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.

Transformer MoE (Switch Transformer)
» Gating network (G) learns which experts (E) to send a part

of the input:

G, (x) = Softmax(z - W)

y

n :
y =) G(z)iEi(z) |
1=1

Switching FFN Layer

t
Add + Normalize J
T

Self-Attention

Top-k gating: I

v; if v; is in the top k elements of v,

KeepTopK(v,k); = '
—0o0 otherwise.

G(z) = Softmax(KeepTopK(H(z), k))

Router Router
_) J
:(Add + Normalize)-4-—-\
Self-Attention
A h
Positional Positonal
embedding €? embedding g?
More Parameters

Fedus et al. Switch Transformers: Scaline to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.

always
pass
through
one
fixed
expert
FFEN

Shared vs. Routed Experts

Expert
N

Router

Expert FFN Expert Expert Expert
(shared) 1 2 3
h f
>

Multihead Attention

>
\

\

\

\

\

Shared expert:
calculating common
knowledge

Routed experts: calculated
token-specific knowledge.
First from Deepspeed-
MoE. later in deepseek
Mok

‘' Softmax(TopK(h, - W))

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale.

Activated Experts Differ across layers

—

Expert | | Expert || Expert || Expert Expert | | Expert || Expert || Expert
1 2 3 N 1 2 3 N
Attention Attention
;—1 Y

s
Expert | | Expert | | Expert || Expert Expert | | Expert || Expert || Expert
1) 3 N 1 2 3 N

Attention Attention

1 ey

red” “fox

Parameters of MoE
« How many parameters in Mixtral 8x/B model?
« 56B7?
« 47B!

o since only FFN layers act are experts, the other parameters
(attention, embedding) are shared

11

Danger of MoE over-fitting to small data

100.0+
97.51
96.0+
92.51

vietrc

90.01
87.51
85.01

82.5-

SuperGLUE CB Task

Sparse train_eval
Sparse validation_eval
Dense train_eval
Dense validation_eval

80.0

| Step :

Metric

102
100+
98-

s 23

SuperGLUE ReCoRD Task

Sparse train_eval
Sparse validation_eval
Dense train_eval
Dense validation_eval

o —

2 g B 8

I

| Step '

In the small task (left), we can see clear overfitting as the sparse model does much worse in the

validation set. In the larger task (right), the MoE performs well. This image is from the ST-MoE paper.

12

What does an Expert network learn?

Expert specialization | Expert position | Routed tokens

» Encoder experts tend to specialize In w1 e

<extraad 10> <extraid 12> <extraid 15>
<extraad 17> <extraad 18> <extraid. 19>,
token groups or shallow conce pts lpert | Seumit o <ot 1> <o id2>
<extraid 4> <extraid 6> <extraid 7>
. <extraid_ 12> <extraid 13> <extraid_14>...
e u n C't u at I O n rO e r' n O u n S Layer 6 <extraid 0> <extraid 4> <extraid 5>
" g "y p b) p p . <extraid. 6> <extraid.7 > <extruid. 14>

<extraad 16> <extraad. 17> <extraad.18>...

Punctuation Layer2 | asessess -yeers).)
Layer 6 srerrtet X . &&7&-,,7,,,. <extraid 27>
» » Conjunctions and articles | Layer 3 The the the the the the the the the The the the
] .
the the the The the the the
Layer 6 a and and and and and and and or and a and

the the if 7 a designed does been is not

[] L] L]
S p eC | a | |Z at I O n . Verbs Layer | died falling identified fell closed left posted lost felt

left said read miss place struggling falling signed died
falling designed based disagree submitted develop

Visual descriptions Layer 0 her over her know dark upper dark outer
 r s color, spatial position center upper blue inner yellow raw mama
* |n multilin gua | setu PS, EXpe rts do not e
) Proper names Layer 1 A Mart Gr Mart Kent Med Cor Tri Ca Man

R Mart Lorraine Colin Ken Sam Ken Gr Angel A

specialize in specific languages due

written and numerical forms Some 2012 who we few lower cach

to token routing and load balancing.

Table from the ST-MoE paper showing which token groups were sent to which expert

Geometric Interpretation of Expert Routing

« KeepTop1 with 3 routing experts (finding linear boundaries
among expert centroids)

14

Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

—> Training and inference for Mok
o Expert parallelism (GShard)

* Deepseek MoE (V3 model)

o code walkthrough

15

Training of MoE

« Keep one Expert on one
worker device

« Replicate all other network
components in all devices

 Need fast all-to-all
communication

Lepikhin et al. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. ICLR 2021.

: Expert

Encoder

arallelism

|

output (shard 1)

/>

|

Add & Norm
I

Feed Forward
FFN

|

|

O — —

!

Encoder
output (shard E)

]

Add & Norm
1

Feed Forward
FFN

Add & Norm
1

Multi-Head
Attention

)

(N/2)x

Model-parallel
MoE

,,’—f—\‘,\
pretosAll Diepatcl

C——

—> Add & N
Multi-Head
Attenti

16

ISIM

Expert Parallel

Mok

ining

Tra

. T gy gy o ™ T iy O S e R B S e Sy s P T T N m

ld
| \
/ I
! i
\ en |
' <t — m g |
I ﬂm 8 = S |
I - — e — DS e— Sl oI
: S Q L o |1
S . “ 2| | &}
__U \
1]
I I
\ y)
. ST R 1 | | S §] L
O iy s T) PR e O T g T N
i 1
1 I
1 I
1 I
\ on |1
i 3 = ARER
I © e =
I R em MAIMAI@“
1 o ®) Q
I S F L o |1
_U Sapy I
" 1
o |
1O I
L T 1 | ST —— N A S L
Oy gy o T) R e ey g T N
i 1
! I
I I
I I
i ~ . AR
i £ 2 Sl |3
) == 5 & S e— S 3|
| S S grley
e\ 88 a M S
_U Sal
“ [
1 P |
e I
N P P e e Ty T Ny o e T iy,
O T iy g o ™ e [e o oy gy e T - N
1 1
1 I
I I
i I
\ an |
i ‘ z 50 | &£
I
I - Gm MAILmAIw“
" m..F o 3 o
F @ @ il
= U
_—G @n NS
AL el T Al bl e T T el T B L b P Wy S
S Ay

all-to-all

original de
all-to-all
dispatch

Split
across

device
Replicate
across
device

———--_ ———————————————————————————

Router

1

Attention

¢- ————————————————————————————————

layer 1 FFN

|

Router

|

Attention
t
Embeddmg

|
|
|
I
|
\
|
I
I
1
1
|
I
|
\
1
'l
|
i Expert 1
|
|
1
1
|
|
1
1
|
1
|
1
|
|
|
1
1
I
I
I

batch1: red fox sits

EGPUZ Expert 2

i layer 2 f

L KMecaches

; Router

" |

1

1

;' Attention
:’EI-‘:]

:' Expert 2

. layer 1 | FFN

! Router

| |

|

I

i Attention

". t

:' Embeddmg

batch?2: the vveather S

18

Gshard’s Interleaving Expert

* For every other layer, use Mok

19

Load Balancing in MoE Training

« Expert-Level Balance Loss (to avoid routing collapse to experts)

#experts
LExpBal = a;M z fiP;
i=1
__ #tokens to expert i . 1 #tokens
fi = #tokens L ™ #tokens “~t=1 Sit
M: num of experts \

routing weight

20

MOE Inference

* Mok inference performance depends on:

o overall model size
o how many activated experts
o overall memory bandwidth

« Default implementation:
o Keep all experts in GPU memory (need large mem)

22

Optimizing MoE inference

System Design Goal: minimize the critical data path per device,
maximize the achievable aggregate memory bandwidth

group and route all tokens with the same critical data path together
to reduce data access per device and achieve maximum aggregate
bandwidth;

Optimize communication scheduling with parallelism coordination

Optimize transformer and Mok related kernels to improve per-device
performance

23

Expert Parallelism and Tensor-Parallelism

Total GPUs = 16, Total Experts = 8

expert-slicing degree = 2, expert-parallel degree = 8
tensor-slicing degree = 4, data-parallel degree = 4

Output

l

MoE Transformer Layer

Expert Parameters (e.g. MLP)

Non-expert Parameters (e.g. Attention)

I

Input

Figure 7: DS-MoE design that embraces the complexity of multi-dimensional parallelism for

/ -

,”' Expert-slicing

-~ Tensor -slicing

-
-

"/ | ‘Mg

Expert-Slice 0
(GPU 0)

Expert-Slice 1
(GPU 8)
Allgather
GPUO <-> GPUS

Expert-parallelism

Expert-Slice 1
(GPU 15)

Expert-slicing
Expert—Sllce 0

(GPU7)

Data-parallelism (no commumcatcon)

[Tensor-slicing

__:J
‘(:J

different partitions (expert and non-expert) of the model.

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale.

_../

Allgather)
(GPU7 <-> GPU1S) !

Expert Parallelism / Expert slicing

Group all input tokens assigned to the same
experts under the same critical data path, and
parallelize processing of the token groups with
different critical paths among different devices
using expert parallelism.

Tensor Parallelism / Tensor slicing:
Partition the non-expert parameters (Attention)
across devices (usually within a node)

Further with Data parallelism

Optimizing MoE Kernels

 MOE Specific Optimizations:
o fuse the gating function into a single kernel
o dense token-to-expert mapping table

* Result: over ox reduction in Mok Kernel related latency

25

Opportunity for Optimized All-to-All

Communication
« Expert parallelism requires all-to-all communication

between all expert parallel devices; the latency increases
inearly with the increase in devices
 Optimization:
— hierarchical all-to-all communication pattern: reduces the
communication hops
— parallelism-coordinated communication optimization: schedules

communications based on the model's parallelism strategy to
minimize overhead.

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale. 26

MOE Training Loss and Throughput

Token-wise validation loss curves for dense and MoE LLMs

3.0 ; Training Throughput gain/
\ T ;ggmfﬁ'ﬁu . samples per Cost Reduction
2.8, o 6.7 dense ix
0 6.78 dense 1.3B+MoE-128 372 5x
o
= 2.6 : ;
O
524 o Training throughput (on 128
> ~ A100 GPUs) comparing MoE
I— based model vs dense model
2.0

0 608 IZOBTokeQSUB 2408 3008 that can both achieve the
same model quality.

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale. 27

DeepSpeed MOE Inference Performance

52 Billion (1.3B+MoE-128)

>
o
70 700 ©
a
60 600 ~
=
. 50 . 500 3
E !
— 40 400
9 2
@ 30 300 2
.Ell a
= 20 200 ©
3
10 100 &
a
0 0 -
=3
8 GPUs 16 GPUs 32 GPUs 64 GPUs o
A
—
B Latency (PyTorch) I Latency (DeepSpeed)
-8 Throughput (PyTorch) Throughput (DeepSpeed)

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale. 28

Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

 Training and inference for MoE
o Expert parallelism (GShard)

=« Deepseek MoE (V3 model)

o code walkthrough

29

Deepseek MOE ED Routed Expert |
L

o BB 8§ 8 _F _§ & 8§ _§ B 0 0§ § [} |

* Fine-grained experts: each
FFEN Is split to k smaller
experts, total KN (N=original
experts)

Output Hidden

* shared experts + routing
experts

* topk weighted average of
routing experts (activating N
kM) Input Hidden

[Router] [d]:H:l]K

Softmax(h*e)

31

DeepSeek V3 MoE (670B)

Vocab: 129,280
dimension=7168

num layer=61

num dense layer=3 (lowest)
num head = 128

dim ffn (inter dim)=18432
moe dim = 2048

num shared experts = 1
num routed experts = 256
num activated experts =8
num expert group==y ,'/
num limited group=4 -

/

/

/

/

s

Expert FFN
(shared)

7
y

Expert Expert Expert
1 2

h

T 7

Expert Expert Expert Expert Expert
6 7 256

Router k B 8
$

Multihead Attention (MLA)
t

\
\
\
\

FFNswigLu (0) = (Swish(x - W)OCe - W) - Wy |
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py 33

TopK(Softmax(h, - W), 8)

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Load Balancing in Deepseek MoE

« Expert-Level Balance Loss (to avoid routing collapse to experts)

#experts

LExpBal = § fiP;
=1
#experts #tokens to experti 1 #tokens
fi = : ' i = e t=1 Sit
#activated_experts #tokens #tokens ’

* Device-level balance loss (balance computation across dev)/
#groups

Lpevpar = @2 z f]P]
j=1

fi = avg f in group j) P; = sumof Pin group j

routing weight

34

Deepseek Libraries to Accelerate MOE

* DeepEP is a communication library tailored for Mixture-of-
Experts (MoE) and expert parallelism (EP).

o https://github.com/deepseek-ai/DeepEP

» Expert Parallelism Load Balancer (EPLB)
o https://github.com/deepseek-ai/EPLB

35

https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB

Deepseek V3 MoE Code Walkthrough

 https://github.com/deepseek-ai/DeepSeek-
V3/blob/main/inference/model.py

36

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Deepspeed Mok Code Example

1mport torch

import deepspeed

import deepspeed.utils.groups as groups
from deepspeed.moe.layer import MoE

WORLD_SIZE = 4
EP_WORLD_SIZE = 2
EXPERTS = &

fc3 = torch.nn.Linear(84, 84)
fc3 = MoEChidden_size=84, expert=self.fc3, num_experts=EXPERTS, ep_size=EP_WORLD_SIZE, k=1)
fc4 = torch.nn.Linear(84, 10)

https://www.deepspeed.ai/tutorials/mixture-of-experts/

Deepspeed Mok Code Example

17 v class MoE(nn.Module):
"""Tnitialize an MoE layer.

20 Arguments:

21 hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.

22 expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).

23 num_experts (int, optional): default=1, the total number of experts per layer.

24 ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.

25 k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.

26 capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.

27 eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.

28 min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.

29 use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer.
30 noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'litter', 'RSample' or 'None'.

31 drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).
32 use_rts (bool, optional): default=True, whether to use Random Token Selection.

33 use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
34 enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts
top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py

Deepspeed Mok Code Example

experts = Experts(expert, self.num_local_experts, self.expert_group_name)
self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor,
min_capacity, noisy_gate_policy, drop_tokens, use_rts, None,
top2_2nd_expert_sampling),
experts,
self.expert_group_name,
self.ep_size,
self.num_local_experts,
use_tutel=use_tutel)
if self.use_residual:
self.mlp = expert
coefficient is used for weighted sum of the output of expert and mlp
self.coefficient = nn.Linear(hidden_size, 2)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py

Deepspeed Mok Code Example

class Experts(nn.Module):

def __init__ (self, expert: nn.Module, num_local_experts: int = 1, expert_group_name: Optional[str] = None) -> None:
super(Experts, self).__init_ ()

self.deepspeed_experts = nn.ModuleList([copy.deepcopy(expert) for _ in range(num_local_experts)])
self.num_local_experts = num_local_experts

TODO: revisit allreduce for moe.gate...
for expert in self.deepspeed_experts:
TODO: Create param groups to handle expert + data case (e.g. param.group = moe_group)
for param in expert.parameters():
param.allreduce = False
param.group_name = expert_group_name

forward(self, inputs: torch.Tensor) -> torch.Tensor:
chunks = inputs.chunk(self.num_local_experts, dim=1)
expert_outputs: List[torch.Tensor] = []

for chunk, expert in zip(chunks, self.deepspeed_experts):
out = expert(chunk)
if isinstance(out, tuple):
out = out[@] # Ignore the bias term for now
expert_outputs += [out]

return torch.cat(expert_outputs, dim=1)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py

Summary

o LLM Mixture-of-Expert Model
o Instead of a single dense FFN, using multiple FFNs (experts)
o Routing network to select one/multiple experts
o Shared-routed experts (deepspeed-MOE, deepseek MOE)
o a few dense layers, then MOE (deepseek MOE)

« Scalable training/inference
o expert parallelism: split experts and replicate non-expert (GShard)
o all-to-all communication for expert output
o load balancing: grouping and avoid collapse (deepseek)
o optimized kernel for MoE

41

Reference

* Rajpohandari et al (2022). DeepSpeed-MoE: Advancing
Mixture-of-Experts Inference and Training to Power Next-
Generation Al Scale.

» Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate
Expert Specialization in Mixture-of-Experts Language
Models.

42

	Slide 1: 11868/11968 Large models with Mixture-of-Experts
	Slide 3: Outline
	Slide 4: Motivation: Scaling for Dense model is hard
	Slide 5: Need for Sparse Model
	Slide 6: Transformer Mixture of Expert Model
	Slide 7: Transformer MoE (Switch Transformer)
	Slide 8: Transformer MoE (Switch Transformer)
	Slide 9: Shared vs. Routed Experts
	Slide 10: Activated Experts Differ across layers
	Slide 11: Parameters of MoE
	Slide 12: Danger of MoE over-fitting to small data
	Slide 13: What does an Expert network learn?
	Slide 14: Geometric Interpretation of Expert Routing
	Slide 15: Outline
	Slide 16: Training of MoE: Expert Parallelism
	Slide 17: Training MoE: Expert Parallelism
	Slide 18: Token Computation Path in MoE
	Slide 19: Gshard’s Interleaving Expert
	Slide 20: Load Balancing in MoE Training
	Slide 22: MOE Inference
	Slide 23: Optimizing MoE inference
	Slide 24: Expert Parallelism and Tensor-Parallelism
	Slide 25: Optimizing MoE Kernels
	Slide 26: Opportunity for Optimized All-to-All Communication
	Slide 27: MOE Training Loss and Throughput
	Slide 28: DeepSpeed MOE Inference Performance
	Slide 29: Outline
	Slide 31: DeepSeek MoE
	Slide 33: DeepSeek V3 MoE (670B)
	Slide 34: Load Balancing in Deepseek MoE
	Slide 35: Deepseek Libraries to Accelerate MOE
	Slide 36: Deepseek V3 MoE Code Walkthrough
	Slide 37: Deepspeed MoE Code Example
	Slide 38: Deepspeed MoE Code Example
	Slide 39: Deepspeed MoE Code Example
	Slide 40: Deepspeed MoE Code Example
	Slide 41: Summary
	Slide 42: Reference

