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• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough
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Outline



• Background: Compute is the primary challenge of training 

massive models.

Motivation: Scaling for Dense model is hard

Sparse model is a promising path for improved model quality 

without increasing training cost, e.g. MOE
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• Dense model is hard to scale, while sparse model scales to 

larger models

• Mixture-of-Expert is one type of sparse model

o pretraining is much faster vs. dense models

oMOE is faster in inference compared to a model with the same 

number of parameters

Need for Sparse Model
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• Replacing Transformer’s FFN with 

omultiple small experts, each expert is a neural network (e.g. 

FFNs)

o a gating network to choose which expert to activate based on 

input token

• Not to be confused with Mixture-of-Expert learning, which 

is a learning algorithm to learn the weighted average of 

predictor models

Transformer Mixture of Expert Model
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Transformer MoE (Switch Transformer)

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.

one token is only passed through one selected FFN
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• Gating network (G) learns which experts (E) to send a part 

of the input:

Transformer MoE (Switch Transformer)

Top-k gating:

Fedus et al. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. JMLR 2022.
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Shared vs. Routed Experts

Multihead Attention

Expert FFN
(shared)

Router

Expert 
2

Expert 
1

Expert 
3

Expert 
N

⨂

⨁

Softmax TopK ℎ𝑡 ⋅ 𝑊

h

always

pass 

through

one 

fixed 

expert 

FFN

Routed experts: calculated 

token-specific knowledge.

First from Deepspeed-

MoE. later in deepseek 

MoE

Shared expert: 

calculating common 

knowledge 

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale. 
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Activated Experts Differ across layers
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• How many parameters in Mixtral 8x7B model?

• 56B? 

• 47B!

o since only FFN layers act are experts, the other parameters 

(attention, embedding) are shared
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Parameters of MoE



Danger of MoE over-fitting to small data
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• Encoder experts tend to specialize in 

token groups or shallow concepts 

(e.g., punctuation, proper nouns).

• Decoder experts exhibit less 

specialization.

• In multilingual setups, experts do not 

specialize in specific languages due 

to token routing and load balancing.

What does an Expert network learn?
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• KeepTop1 with 3 routing experts (finding linear boundaries 

among expert centroids)
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Geometric Interpretation of Expert Routing



• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough
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Outline



• Keep one Expert on one 

worker device

• Replicate all other network 

components in all devices

• Need fast all-to-all 

communication
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Training of MoE: Expert Parallelism

Lepikhin et al. GShard: Scaling Giant Models with Conditional 

Computation and Automatic Sharding. ICLR 2021.



Training MoE: Expert Parallelism
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Token Computation Path in MoE
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• For every other layer, use MoE 
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Gshard’s Interleaving Expert



• Expert-Level Balance Loss (to avoid routing collapse to experts)

𝐿𝐸𝑥𝑝𝐵𝑎𝑙 = 𝛼1𝑀 ෍

𝑖=1

#experts

𝑓𝑖𝑃𝑖

𝑓𝑖 =
#tokens to expert 𝑖

#tokens
                    𝑃𝑖 =

1

#tokens
σ𝑡=1

#tokens 𝑠𝑖,𝑡

M: num of experts
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Load Balancing in MoE Training

routing weight



• MoE inference performance depends on:

o overall model size

o how many activated experts

o overall memory bandwidth

• Default implementation: 

o Keep all experts in GPU memory (need large mem)
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MOE Inference



• System Design Goal: minimize the critical data path per device, 

maximize the achievable aggregate memory bandwidth

• group and route all tokens with the same critical data path together 

to reduce data access per device and achieve maximum aggregate 

bandwidth;

• Optimize communication scheduling with parallelism coordination

• Optimize transformer and MoE related kernels to improve per-device 

performance
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Optimizing MoE inference



Expert Parallelism and Tensor-Parallelism

Expert Parallelism / Expert slicing

Group all input tokens assigned to the same 

experts under the same critical data path, and 

parallelize processing of the token groups with 

different critical paths among different devices 

using expert parallelism.

Tensor Parallelism / Tensor slicing:

Partition the non-expert parameters (Attention) 

across devices (usually within a node)

Further with Data parallelism

24Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale. 



• MOE Specific Optimizations:

o fuse the gating function into a single kernel

o dense token-to-expert mapping table

• Result: over 6x reduction in MoE Kernel related latency

25

Optimizing MoE Kernels



• Expert parallelism requires all-to-all communication 

between all expert parallel devices; the latency increases 

linearly with the increase in devices

• Optimization:

- hierarchical all-to-all communication pattern: reduces the 

communication hops

- parallelism-coordinated communication optimization: schedules 

communications based on the model's parallelism strategy to 

minimize overhead.

Opportunity for Optimized All-to-All 

Communication

26Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale. 



Token-wise validation loss curves for dense and MoE LLMs

MOE Training Loss and Throughput

Training throughput (on 128 

A100 GPUs) comparing MoE 

based model vs dense model 

that can both achieve the 

same model quality.
27Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale. 



DeepSpeed MOE Inference Performance

28Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation AI Scale. 



• Transformer Mixture-of-Expert Model

o Switch Transformer architecture

o Shared-routed Experts

• Training and inference for MoE

o Expert parallelism (GShard)

• Deepseek MoE (V3 model)

o code walkthrough
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Outline



• Fine-grained experts: each 

FFN is split to k smaller 

experts, total kN (N=original 

experts) 

• shared experts + routing 

experts

• topk weighted average of 

routing experts (activating 

kM)

DeepSeek MoE
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Softmax(h*e)



Vocab: 129,280

dimension=7168

num layer=61

num dense layer=3 (lowest)

num head = 128

dim ffn (inter dim)=18432

moe dim = 2048

num shared experts = 1

num routed experts = 256

num activated experts = 8

num expert group=8

num limited group=4
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DeepSeek V3 MoE (670B)

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py 

Multihead Attention (MLA)
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https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py


• Expert-Level Balance Loss (to avoid routing collapse to experts)

𝐿𝐸𝑥𝑝𝐵𝑎𝑙 = 𝛼1 ෍

𝑖=1

#experts

𝑓𝑖𝑃𝑖

𝑓𝑖 =
#experts

#activated_experts
∙

#tokens to expert 𝑖

#tokens
                    𝑃𝑖 =

1

#tokens
σ𝑡=1

#tokens 𝑠𝑖,𝑡

• Device-level balance loss (balance computation across dev)

𝐿𝐷𝑒𝑣𝐵𝑎𝑙 = 𝛼2 ෍

𝑗=1

#groups

𝑓𝑗𝑃𝑗

𝑓𝑗 = 𝑎𝑣𝑔 𝑓 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗)                         𝑃𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑃 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗
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Load Balancing in Deepseek MoE

routing weight



• DeepEP is a communication library tailored for Mixture-of-

Experts (MoE) and expert parallelism (EP).

o https://github.com/deepseek-ai/DeepEP 

• Expert Parallelism Load Balancer (EPLB)

o https://github.com/deepseek-ai/EPLB 
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Deepseek Libraries to Accelerate MOE

https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/DeepEP
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB


• https://github.com/deepseek-ai/DeepSeek-

V3/blob/main/inference/model.py 
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Deepseek V3 MoE Code Walkthrough

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py


Deepspeed MoE Code Example

https://www.deepspeed.ai/tutorials/mixture-of-experts/
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Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py 38



Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py
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Deepspeed MoE Code Example

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py
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• LLM Mixture-of-Expert Model

o Instead of a single dense FFN, using multiple FFNs (experts)

o Routing network to select one/multiple experts

o Shared-routed experts (deepspeed-MOE, deepseek MOE) 

o a few dense layers, then MOE (deepseek MOE)

• Scalable training/inference

o expert parallelism: split experts and replicate non-expert  (GShard)

o all-to-all communication for expert output

o load balancing: grouping and avoid collapse (deepseek)

o optimized kernel for MoE

41

Summary



• Rajbhandari et al (2022). DeepSpeed-MoE: Advancing 

Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. 

• Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate 

Expert Specialization in Mixture-of-Experts Language 

Models. 
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