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Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

 Training and inference for MoE
o Expert parallelism (GShard)

* Deepseek MoE (V3 model)

o code walkthrough



Motivation: Scaling for Dense model is hard

» Background: Compute is the primary challenge of training

massive models.

Model Model Size | Hardware | Days to Train
Megatron-LM GPT-2 8.3B 512 V100 GPU 9.2 days
OPT 175B 992 A100 GPU 56 days
MT-NLG 530B 2200 A100 GPU 60 days
PaLM 540B 6144 TPU v4 57 days

Sparse model is a promising path for improved model quality
without increasing training cost, e.g. MOE



Need for Sparse Model

* Dense model is hard to scale, while sparse model scales to
larger models

« Mixture-of-Expert is one type of sparse model
o pretraining is much faster vs. dense models

o MOE is faster in inference compared to a model with the same
number of parameters



Transformer Mixture of Expert Model

* Replacing Transformer’'s FFN with

o multiple small experts, each expert is a neural network (e.g.
FFENs)

o a gating network to choose which expert to activate based on
iInput token

* Not to be confused with Mixture-of-Expert learning, which
'S a learning algorithm to learn the weighted average of
predictor models



Transformer MoE (Switch Transformer)
one token is only passed through one selected FFN
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Transformer MoE (Switch Transformer)
» Gating network (G) learns which experts (E) to send a part

of the input:

G, (x) = Softmax(z - W)
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Shared vs. Routed Experts

Expert
N

Router

Expert FFN Expert Expert Expert
(shared) 1 2 3
h f
>

Multihead Attention

>
\

\

\

\

\

Shared expert:
calculating common
knowledge

Routed experts: calculated
token-specific knowledge.
First from Deepspeed-
MoE. later in deepseek
Mok

‘' Softmax(TopK(h, - W))
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Activated Experts Differ across layers
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Parameters of MoE
« How many parameters in Mixtral 8x/B model?
« 56B7?
« 47B!

o since only FFN layers act are experts, the other parameters
(attention, embedding) are shared
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Danger of MoE over-fitting to small data
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In the small task (left), we can see clear overfitting as the sparse model does much worse in the

validation set. In the larger task (right), the MoE performs well. This image is from the ST-MoE paper.
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What does an Expert network learn?

Expert specialization | Expert position | Routed tokens
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Geometric Interpretation of Expert Routing

« KeepTop1 with 3 routing experts (finding linear boundaries
among expert centroids)
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Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

—> Training and inference for Mok
o Expert parallelism (GShard)

* Deepseek MoE (V3 model)

o code walkthrough
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Training of MoE

« Keep one Expert on one
worker device

« Replicate all other network
components in all devices

 Need fast all-to-all
communication

Lepikhin et al. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. ICLR 2021.
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Expert Parallel
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Gshard’s Interleaving Expert

* For every other layer, use Mok
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Load Balancing in MoE Training

« Expert-Level Balance Loss (to avoid routing collapse to experts)

#experts
LExpBal = a;M z fiP;
i=1
__ #tokens to expert i . 1 #tokens
fi = #tokens L ™ #tokens “~t=1 Sit
M: num of experts \

routing weight
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MOE Inference

* Mok inference performance depends on:

o overall model size
o how many activated experts
o overall memory bandwidth

« Default implementation:
o Keep all experts in GPU memory (need large mem)
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Optimizing MoE inference

System Design Goal: minimize the critical data path per device,
maximize the achievable aggregate memory bandwidth

group and route all tokens with the same critical data path together
to reduce data access per device and achieve maximum aggregate
bandwidth;

Optimize communication scheduling with parallelism coordination

Optimize transformer and Mok related kernels to improve per-device
performance

23



Expert Parallelism and Tensor-Parallelism

Total GPUs = 16, Total Experts = 8

expert-slicing degree = 2, expert-parallel degree = 8
tensor-slicing degree = 4, data-parallel degree = 4

Output

l

MoE Transformer Layer

Expert Parameters (e.g. MLP)

Non-expert Parameters (e.g. Attention)

I
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Figure 7: DS-MoE design that embraces the complexity of multi-dimensional parallelism for
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Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale.
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Expert Parallelism / Expert slicing

Group all input tokens assigned to the same
experts under the same critical data path, and
parallelize processing of the token groups with
different critical paths among different devices
using expert parallelism.

Tensor Parallelism / Tensor slicing:
Partition the non-expert parameters (Attention)
across devices (usually within a node)

Further with Data parallelism



Optimizing MoE Kernels

 MOE Specific Optimizations:
o fuse the gating function into a single kernel
o dense token-to-expert mapping table

* Result: over ox reduction in Mok Kernel related latency
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Opportunity for Optimized All-to-All

Communication
« Expert parallelism requires all-to-all communication

between all expert parallel devices; the latency increases
inearly with the increase in devices
 Optimization:
— hierarchical all-to-all communication pattern: reduces the
communication hops
— parallelism-coordinated communication optimization: schedules

communications based on the model's parallelism strategy to
minimize overhead.

Rajbhandari et al (2022). DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-Generation Al Scale. 26



MOE Training Loss and Throughput

Token-wise validation loss curves for dense and MoE LLMs
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DeepSpeed MOE Inference Performance
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Outline

« Transformer Mixture-of-Expert Model
o Switch Transformer architecture
o Shared-routed Experts

 Training and inference for MoE
o Expert parallelism (GShard)

=« Deepseek MoE (V3 model)

o code walkthrough
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DeepSeek V3 MoE (670B)

Vocab: 129,280
dimension=7168

num layer=61

num dense layer=3 (lowest)
num head = 128

dim ffn (inter dim)=18432
moe dim = 2048

num shared experts = 1
num routed experts = 256
num activated experts =8
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https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py

Load Balancing in Deepseek MoE

« Expert-Level Balance Loss (to avoid routing collapse to experts)

#experts

LExpBal = § fiP;
=1
#experts #tokens to experti 1 #tokens
fi = : ' i = e t=1 Sit
#activated_experts #tokens #tokens ’

* Device-level balance loss (balance computation across dev)/
#groups

Lpevpar = @2 z f]P]
j=1

fi = avg f in group j) P; = sumof Pin group j

routing weight
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Deepseek Libraries to Accelerate MOE

* DeepEP is a communication library tailored for Mixture-of-
Experts (MoE) and expert parallelism (EP).

o https://github.com/deepseek-ai/DeepEP

» Expert Parallelism Load Balancer (EPLB)
o https://github.com/deepseek-ai/EPLB
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Deepseek V3 MoE Code Walkthrough

 https://github.com/deepseek-ai/DeepSeek-
V3/blob/main/inference/model.py
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Deepspeed Mok Code Example

1mport torch

import deepspeed

import deepspeed.utils.groups as groups
from deepspeed.moe.layer import MoE

WORLD_SIZE = 4
EP_WORLD_SIZE = 2
EXPERTS = &

fc3 = torch.nn.Linear(84, 84)
fc3 = MoEChidden_size=84, expert=self.fc3, num_experts=EXPERTS, ep_size=EP_WORLD_SIZE, k=1)
fc4 = torch.nn.Linear(84, 10)

https://www.deepspeed.ai/tutorials/mixture-of-experts/




Deepspeed Mok Code Example

17 v class MoE(nn.Module):
"""Tnitialize an MoE layer.

20 Arguments:

21 hidden_size (int): the hidden dimension of the model, importantly this is also the input and output dimension.

22 expert (nn.Module): the torch module that defines the expert (e.g., MLP, torch.linear).

23 num_experts (int, optional): default=1, the total number of experts per layer.

24 ep_size (int, optional): default=1, number of ranks in the expert parallel world or group.

25 k (int, optional): default=1, top-k gating value, only supports k=1 or k=2.

26 capacity_factor (float, optional): default=1.0, the capacity of the expert at training time.

27 eval_capacity_factor (float, optional): default=1.0, the capacity of the expert at eval time.

28 min_capacity (int, optional): default=4, the minimum capacity per expert regardless of the capacity_factor.

29 use_residual (bool, optional): default=False, make this MoE layer a Residual MoE (https://arxiv.org/abs/2201.05596) layer.
30 noisy_gate_policy (str, optional): default=None, noisy gate policy, valid options are 'litter', 'RSample' or 'None'.

31 drop_tokens (bool, optional): default=True, whether to drop tokens - (setting to False is equivalent to infinite capacity).
32 use_rts (bool, optional): default=True, whether to use Random Token Selection.

33 use_tutel (bool, optional): default=False, whether to use Tutel optimizations (if installed).
34 enable_expert_tensor_parallelism (bool, optional): default=False, whether to use tensor parallelism for experts
top2_2nd_expert_sampling (bool, optional): default=True, whether to perform sampling for 2nd expert

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py




Deepspeed Mok Code Example

experts = Experts(expert, self.num_local_experts, self.expert_group_name)
self.deepspeed_moe = MOELayer(TopKGate(hidden_size, num_experts, k, capacity_factor, eval_capacity_factor,
min_capacity, noisy_gate_policy, drop_tokens, use_rts, None,
top2_2nd_expert_sampling),
experts,
self.expert_group_name,
self.ep_size,
self.num_local_experts,
use_tutel=use_tutel)
if self.use_residual:
self.mlp = expert
# coefficient is used for weighted sum of the output of expert and mlp
self.coefficient = nn.Linear(hidden_size, 2)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/layer.py




Deepspeed Mok Code Example

class Experts(nn.Module):

def __init__ (self, expert: nn.Module, num_local_experts: int = 1, expert_group_name: Optional[str] = None) -> None:
super(Experts, self).__init_ ()

self.deepspeed_experts = nn.ModuleList([copy.deepcopy(expert) for _ in range(num_local_experts)])
self.num_local_experts = num_local_experts

# TODO: revisit allreduce for moe.gate...
for expert in self.deepspeed_experts:
# TODO: Create param groups to handle expert + data case (e.g. param.group = moe_group)
for param in expert.parameters():
param.allreduce = False
param.group_name = expert_group_name

forward(self, inputs: torch.Tensor) -> torch.Tensor:
chunks = inputs.chunk(self.num_local_experts, dim=1)
expert_outputs: List[torch.Tensor] = []

for chunk, expert in zip(chunks, self.deepspeed_experts):
out = expert(chunk)
if isinstance(out, tuple):
out = out[@] # Ignore the bias term for now
expert_outputs += [out]

return torch.cat(expert_outputs, dim=1)

https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/experts.py



Summary

o LLM Mixture-of-Expert Model
o Instead of a single dense FFN, using multiple FFNs (experts)
o Routing network to select one/multiple experts
o Shared-routed experts (deepspeed-MOE, deepseek MOE)
o a few dense layers, then MOE (deepseek MOE)

« Scalable training/inference
o expert parallelism: split experts and replicate non-expert (GShard)
o all-to-all communication for expert output
o load balancing: grouping and avoid collapse (deepseek)
o optimized kernel for MoE

41



Reference

* Rajpohandari et al (2022). DeepSpeed-MoE: Advancing
Mixture-of-Experts Inference and Training to Power Next-
Generation Al Scale.

» Dai, D. et al. (2024). DeepSeekMoE: Towards Ultimate
Expert Specialization in Mixture-of-Experts Language
Models.
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