
11868/11968 LLM Systems

Parameter Efficient Fine-Tuning for

LLM

Lei Li

Ack: Kath Choi, Jiaqi Song, Xianwei Zou, Hanshi Sun, Steven Kolawole

• Direct quantization for low-bit numbers

o absmax: linearly scale according to max abs value

o zero-point: finding zero-point and scale

• Layer-wise quantization approaches

o AdaQuant / KD: ZeroQuant / LLM.int8()

• GPTQ

o layer-wise quantization + compensation for errors + precompute

o accurately compress some of the largest publicly-available models down to 3

and 4 bits, and bring end-to-end speedups

2

Recap

• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (or Counter-interference

adapter, CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough

3

Outline

• Full-parameter Fine-Tuning

o Update all model parameters → Require large GPU memory

• e.g. Harf-precision Fine-tuning cost per parameter (Adam)

oWeight: 16 bits (2 bytes) * N

oWeight Gradient: 16 bits (2 bytes) * N

oOptimizer States: 2 * 16 bits (4 bytes) * N

o Activations: ~ 1-2x of parameters

o LLaMA-8B ➔ ~ 80GB working memory

4

LLM Fine-tuning is Expensive

5

Parameter Efficient Fine-tuning (PEFT)

• Only update a small subset (or low-rank) of parameters

• e.g. Fine-tuning cost per parameter with LoRA

oWeight: 16 bits

oWeight Gradient: ~0.4 bits

oOptimizer State: ~0.8 bits

o Adapter Weights: ~0.4 bits

o Activations: ~ 1-2x of parameters

o LLaMA-8B ➔ ~ 33GB working memory, fits a single A100.

• Parameter efficient fine-tuning together with quantization

• e.g. Fine-tuning cost per parameter with QLoRA

oWeight: 4 bits

oWeight Gradient: ~0.4 bit

oOptimizer State: ~0.8 bit

o Adapter Weights: ~0.4 bit

o Activations: ~ 1-2x of parameters

o LLaMA-8B ➔ ~ 33GB 9.2GB working memory

6

PEFT with Quantization

Dettmers et al. QLoRA: Efficient Finetuning of Quantized Large Language Models. 2022.

• Selective Methods:

o fune-tune selected subsets

• Reparameterization Method:

o low-rank representation weights

• Additive Methods:

o add trainable layers or parameters

o e.g. Adapters, Soft prompts

(Prompt Tuning)

7

PEFT Approaches

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning. Lialin et al. 2024.

• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter,

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough

11

Outline

• Freeze the pre-trained parameters 𝑊0

• Train a low-rank update to the parameters 𝛿𝑊
o𝑊′ = 𝑊0 + 𝛿𝑤

12

Additive Fine-tuning

low-rank
fine-tune

Low-rank Adapation (LoRA) for Fine-tuning

13

𝑊′ = 𝑊 +𝐴𝑑×𝑟 ∙ 𝐵𝑟×𝑑

low rank 𝑟 ≪ 𝑑

first invented in Counter-Interference Adapter (CIAT) for Multilingual Machine Translation

[Zhu et al, EMNLP 2021], later re-invented by Low-Rank Adaptation of Large Language

Models [Hu et al, ICLR 2022]

14

Applying LoRA/CIAT to LLM

Multi-Head

Attention

Add & Norm

Input

Embedding

Inputs

Feed Forward

Add & Norm

Output

Embedding

Feed Forward

Add & Norm

Multi-Head

Attention

Add & Norm

Add & Norm

Masked

Multi-Head

Attention

Linear

Softmax

Output

Probabilities

Outputs

(shifted right)

Q

Scaled Dot-Product

Attention

Linear Linear Linear

Concat

Linear

h

K V

Multi-Head Attention

Apply LoRA to weights

in attention layer
𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ,𝑊

but not to FFN’s linear

weights (storing

knowledge)

In CIAT method, it is

also applied to

embeddings and FFN

layers, and improves.

rank r=8 or 16

• Inference: use 𝑊′ = 𝑊 +𝐴 ∙ 𝐵 for

each weight matrix and store A,B as

well (small additional cost, r=8 or

16)

• We can switch between LoRA

weight for each task/domain

o𝑊′′ = 𝑊′ − 𝐴 ∙ 𝐵 + 𝐴′′ ∙ 𝐵′′

15

Inference for LoRA-trained models

Multi-Head

Attention

Add & Norm

Input

Embedding

Inputs

Feed Forward

Add & Norm

Output

Embedding

Feed Forward

Add & Norm

Multi-Head

Attention

Add & Norm

Add & Norm

Masked

Multi-Head

Attention

Linear

Softmax

Output

Probabilities

Outputs

(shifted right)

LoRA weights for

new domain

LoRA weights for

current domain
Counter-Interference Adapter (CIAT) for Multilingual Machine Translation [Zhu et al, EMNLP 2021]

Low-Rank Adaptation of Large Language Models [Hu et al, ICLR 2022]

𝑊′ = 𝑊0 + 𝐴 ∙ 𝐵

• The original pre-trained weight matrix is fixed. We only need

to compute the gradients with respect to A and B.
𝜕𝐿

𝜕𝐴
= 𝑔𝑜𝑢𝑡 ∙

𝜕 𝑊0𝑥 + 𝐴 ∙ 𝐵𝑥

𝜕𝐴
= 𝑔𝑜𝑢𝑡 ∙ 𝐵𝑥 𝑇

𝜕𝐿

𝜕𝐵
= 𝑔𝑜𝑢𝑡 ∙

𝜕 𝑊0𝑥 + 𝐴 ∙ 𝐵𝑥

𝜕𝐵
= (𝑔𝑜𝑢𝑡

𝑇 ∙ 𝐴)𝑥𝑇

16

Backward Computation of LoRA/CIAT

• No need to store original

parameter states

• Only need to store:

o original parameters

o adapter weights: 2 x d x r

o adapter gradients: 2 x d x r

o adapter states: first and

second moments, 2 x d x r

o activations

17

Training LoRA/CIAT

Counter-Interference Adapter (CIAT) for Multilingual Machine Translation [Zhu et al, EMNLP 2021]

Low-Rank Adaptation of Large Language Models [Hu et al, ICLR 2022]

• LoRA reduce the number of trainable parameters thus

reducing the GPU memory requirement

• LLaMA 8B:

8B parameters -> 16GB (BF16)

optimizer states -> 48GB (Adam)

• With LoRA/CIAT:

4M parameters -> 8MB

optimizer states -> 24MB (Adam)

18

Memory Consumption of LoRA Training

• Reduced Memory Footprint

o no need to store state for frozen params

o LLaMA 8B: 8B → 4M

• Faster Training (fine-tuning)

o training time

• ➔ Enable fine-tuning of large models, and on smaller

devices.

• Inference is as normal LLM.
19

Benefits of LoRA for Large Models

• Tasks

o Natural Language Understanding (NLU): RoBERTa, DeBERTa
▪ Subtasks: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, STS-B

o Natural Language Generation (NLG): GPT-2, GPT-3
▪ Metrics: BLEU, NIST, MET, ROUGE-L, CIDEr

• Six Baselines

o Fine-Tuning, Bias-only or BitFit, Prefix-embedding tuning

(PreEmbed), Prefix-layer tuning (PreLayer), Adapter tuning, LoRA

Experiments of LoRA

LoRA is more effective than other fine-

tuning methods

NLU Tasks NLG Tasks

LoRA enhances model adaptation with fewer parameters, ensuring both
efficiency and improved performance

• Increasing rank does not cover more meaningful subspaces

➔ a low-rank adaptation matrix (r=8)

23

How to choose a proper rank in LoRA?

Experiments of LoRA

NLG Stress Test: Scale up to GPT-3 with 175B parameter

Not all methods benefit monotonically from an
increase in trainable parameters.

LoRA Performance on Math (GSM8K)

28

• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter,

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough

30

Outline

• GPTQ is Post-Training Quantization (PTQ): converting the

weights of an already trained model to a lower precision

without any retraining.

• Quantization-Aware Training (QAT): integrates the weight

conversion process during the training stage. often superior

model performance. (QLoRA)

31

Quantization-Aware Training

QLoRA = Low-rank + Quantized training

● Major innovations:

○ 4-bit Normal Float for storage

○ Double Quantization

○ Page Optimizer

● BF16 for computation

➔ Reduces the average memory requirements of fine-tuning a 65B

parameter model from 780GB of GPU memory to 48GB on a single

GPU.

➔ Preserving performance compared to a 16- bit finetuning
32

Overview of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

QLORA has one storage data type (usually 4-bit NormalFloat)

and a computation data type (BF16)

1. Double Quantize the model weights to NF4 format

2. Double De-quantize the weights to BF16

3. Perform forward and backward pass in BF16

4. Compute weight gradients (BF 16) only for the LoRA

parameters
33

QLoRA algorithm

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• A 4-bit number can represent 16 values

• Standard quantization (absmax) divides data into equal-

sized bins

o high quantization error for non-uniform distributed data

o lots of data with small difference, all get quantized to the same

value

34

4-bit Number

• split weights into blocks of 64 numbers

• Find max abs value ➔ scale

• Normalize the 64 numbers w/ scale (ො𝑥 =
𝑥

𝑠𝑐𝑎𝑙𝑒
)

• Find the nearest value from a lookup table
[-1. -0.6962 -0.5251 -0.3949 -0.2844 -0.1848 -0.0911 0. 0.0796 0.1609 0.2461
0.3379 0.4407 0.5626 0.723 1.]

• Output the quantized values (index from lookup table)
35

Normal Float 4 bit quantization (NF-4)

[-7, 8]

Illustration: NF-4

36

scale = max(abs(x)) = 0.0071
value = 0.0045

normalized value = 0.0045 / 0.0071 = 0.63

-1. -0.696 -0.525 -0.395 -0.28 -0.18 -0.09 0. 0.08 0.16 0.25 0.34 0.44 0.56 0.72 1.

mapped value = 0.56

quantized value = 6

Exact values of the NF4 data type:

37

Constructing NF-4 Lookup Table

probably quantile

38

De-quantization of NF-4
-7 -6 -5 -4 -3 6 8

[-1. -0.6962 -0.5251 -0.3949 -0.2844 -0.1848 -0.0911 0.
0.0796 0.1609 0.2461 0.3379 0.4407 0.5626 0.723 1.]

0.5626

e.g. 0.0071

de-quantized value =0.00399

rounding error = 0.0045-0.00399

= 0.0005

Motivation: While a small blocksize is required for precise 4-
bit quantization, it also has a considerable overhead.

• E.g. using 32-bit constants and a blocksize of 64, quantization constants add
32/64 = 0.5 bits per parameter on average.

Double Quantization (DQ) quantized the quantization constants
for additional memory savings.

39

Double Quantization for Scale Factors

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• For every block of 64 values, apply NF-4 quantization

• For every block of 256 scales (from NF-4), apply FP8

quantization, store 2nd scale in FP32

40

QLoRA Double Quantization

memory needed: 0.5 + 1/64 + 1/(64*256) * 4 = 0.52 bytes per param

• Store pre-trained weights in NF4 with double quantization
oC1 in FP32 (block size 256), C2 in FP8 (block size 64)

• Apply LoRA, store LoRA weights in BF16

• Store input in BF16, computing (forward/backward/opt) in BF16

41

QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

Motivation: When training LLMs, GPU’s OOM error is a common
problem.

42

Paged Optimizers

Paged optimizers are used to manage memory usage during training.
Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• Using the NVIDIA unified memory which does page-to-page

transfers between the CPU and GPU for error-free GPU

processing when the GPU occasionally runs out-of-memory.

o like regular memory paging between CPU RAM and the disk.

o Feature allocates paged memory for the optimizer states which

are then automatically evicted to CPU during GPU OOM and

back into GPU memory when memory is needed in the optimizer

update step

43

Paged Optimizers

Paged Optimizers

44Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• Default LoRA Hyperparameters do not match 16-bit performance

• NF4 yield better performance than 4-bit Float (FP4)

45

Performance of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• 4-bit QLoRA matches 16-bit full fine-tuning and 16-bit LoRA performance

46

Experiments of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.

• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter,

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough

48

Outline

LoRA Code Walkthrough

49

● Define the LoRA Layer

LoRA Code Walkthrough

50

● LoRA implement in the

linear layer

● Initialize the LoRA A and

B layer

● Freeze the pre-trained

weight matrix

LoRA Code Walkthrough

51

● Train module merge the

weights of LoRA layer into the

pre-train weights

● Given an input x, the forward

process compute the sum of

the result from two branches:

To train with QLoRA, load the model with the quantization config, then run with

LoRA. BitsAndBytes contains custom wrapper for CUDA quantization operations.

AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-70b",

quantization_config=BitsAndBytesConfig(

 load_in_4bit=args.bits == 4,

 load_in_8bit=args.bits == 8,

 llm_int8_threshold=6.0,

 llm_int8_has_fp16_weight=False,

 bnb_4bit_compute_dtype=compute_dtype,

 bnb_4bit_use_double_quant=args.double_quant,

 bnb_4bit_quant_type=args.quant_type,))

QLoRA code

52

Inference Demo:

https://github.com/artidoro/qlora/blob/main/examples/guanaco_7B_demo_colab.ipynb

https://github.com/artidoro/qlora/blob/main/examples/guanaco_7B_demo_colab.ipynb

• LoRA/CIAT enables cost-effective adaptation of large

models by modifying fewer parameters (low-rank).

• Scalability: Effective for giant models like GPT-3, making

adaptation more accessible.

• Low-Data Efficacy: Superior in low-data settings, reducing

the need for large datasets.

53

Summary

• QLoRA: double quantizing weights using NF4, computing in

BF16

• QLoRA matches original Low-rank Adapter performance.

• 1st method that enables fine-tuning of 33B LLM on a single

consumer GPU

54

Summary

	Slide 1: 11868/11968 LLM Systems Parameter Efficient Fine-Tuning for LLM
	Slide 2: Recap
	Slide 3: Outline
	Slide 4: LLM Fine-tuning is Expensive
	Slide 5: Parameter Efficient Fine-tuning (PEFT)
	Slide 6: PEFT with Quantization
	Slide 7: PEFT Approaches
	Slide 11: Outline
	Slide 12: Additive Fine-tuning
	Slide 13: Low-rank Adapation (LoRA) for Fine-tuning
	Slide 14: Applying LoRA/CIAT to LLM
	Slide 15: Inference for LoRA-trained models
	Slide 16: Backward Computation of LoRA/CIAT
	Slide 17: Training LoRA/CIAT
	Slide 18: Memory Consumption of LoRA Training
	Slide 19: Benefits of LoRA for Large Models
	Slide 20: Experiments of LoRA
	Slide 22: LoRA is more effective than other fine-tuning methods
	Slide 23: How to choose a proper rank in LoRA?
	Slide 27: Experiments of LoRA
	Slide 28: LoRA Performance on Math (GSM8K)
	Slide 30: Outline
	Slide 31: Quantization-Aware Training
	Slide 32: Overview of QLoRA
	Slide 33: QLoRA algorithm
	Slide 34: 4-bit Number
	Slide 35: Normal Float 4 bit quantization (NF-4)
	Slide 36: Illustration: NF-4
	Slide 37: Constructing NF-4 Lookup Table
	Slide 38: De-quantization of NF-4
	Slide 39: Double Quantization for Scale Factors
	Slide 40: QLoRA Double Quantization
	Slide 41: QLoRA
	Slide 42: Paged Optimizers
	Slide 43: Paged Optimizers
	Slide 44: Paged Optimizers
	Slide 45: Performance of QLoRA
	Slide 46: Experiments of QLoRA
	Slide 48: Outline
	Slide 49: LoRA Code Walkthrough
	Slide 50: LoRA Code Walkthrough
	Slide 51: LoRA Code Walkthrough
	Slide 52: QLoRA code
	Slide 53: Summary
	Slide 54: Summary

