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• Direct quantization for low-bit numbers

o absmax: linearly scale according to max abs value

o zero-point: finding zero-point and scale

• Layer-wise quantization approaches

o AdaQuant / KD: ZeroQuant / LLM.int8()

• GPTQ

o layer-wise quantization + compensation for errors + precompute

o accurately compress some of the largest publicly-available models down to 3 

and 4 bits, and bring end-to-end speedups
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Recap



• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (or Counter-interference 

adapter, CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough
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Outline



• Full-parameter Fine-Tuning

o Update all model parameters → Require large GPU memory

• e.g. Harf-precision Fine-tuning cost per parameter (Adam)

oWeight: 16 bits (2 bytes) * N

oWeight Gradient: 16 bits (2 bytes) * N

oOptimizer States: 2 * 16 bits (4 bytes) * N

o Activations: ~ 1-2x of parameters

o LLaMA-8B ➔ ~ 80GB working memory
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LLM Fine-tuning is Expensive
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Parameter Efficient Fine-tuning (PEFT)

• Only update a small subset (or low-rank) of parameters

• e.g. Fine-tuning cost per parameter with LoRA

oWeight: 16 bits

oWeight Gradient: ~0.4 bits

oOptimizer State: ~0.8 bits

o Adapter Weights: ~0.4 bits

o Activations: ~ 1-2x of parameters 

o LLaMA-8B ➔ ~ 33GB working memory, fits a single A100.



• Parameter efficient fine-tuning together with quantization

• e.g. Fine-tuning cost per parameter with QLoRA

oWeight: 4 bits

oWeight Gradient: ~0.4 bit

oOptimizer State: ~0.8 bit

o Adapter Weights: ~0.4 bit

o Activations: ~ 1-2x of parameters 

o LLaMA-8B ➔ ~ 33GB 9.2GB working memory
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PEFT with Quantization

Dettmers et al. QLoRA: Efficient Finetuning of Quantized Large Language Models. 2022.



• Selective Methods: 

o fune-tune selected subsets

• Reparameterization Method: 

o low-rank representation weights 

• Additive Methods: 

o add trainable layers or parameters

o e.g. Adapters, Soft prompts 

(Prompt Tuning)
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PEFT Approaches

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning. Lialin et al. 2024.



• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter, 

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough
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Outline



• Freeze the pre-trained parameters 𝑊0

• Train a low-rank update to the parameters 𝛿𝑊
o𝑊′ = 𝑊0 + 𝛿𝑤
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Additive Fine-tuning

low-rank
fine-tune



Low-rank Adapation (LoRA) for Fine-tuning
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𝑊′ = 𝑊 +𝐴𝑑×𝑟 ∙ 𝐵𝑟×𝑑

low rank 𝑟 ≪ 𝑑

first invented in Counter-Interference Adapter (CIAT) for Multilingual Machine Translation 

[Zhu et al, EMNLP 2021], later re-invented by Low-Rank Adaptation of Large Language 

Models [Hu et al, ICLR 2022]
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Applying LoRA/CIAT to LLM
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Apply LoRA to weights 

in attention layer 
𝑊𝑄,𝑊𝐾 ,𝑊𝑉 ,𝑊

but not to FFN’s linear 

weights (storing 

knowledge)

In CIAT method, it is 

also applied to 

embeddings and FFN 

layers, and improves.

rank r=8 or 16



• Inference: use 𝑊′ = 𝑊 +𝐴 ∙ 𝐵 for 

each weight matrix and store A,B as 

well (small additional cost, r=8 or 

16)

• We can switch between LoRA 

weight for each task/domain

o𝑊′′ = 𝑊′ − 𝐴 ∙ 𝐵 + 𝐴′′ ∙ 𝐵′′
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Inference for LoRA-trained models
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Counter-Interference Adapter (CIAT) for Multilingual Machine Translation [Zhu et al, EMNLP 2021]

Low-Rank Adaptation of Large Language Models [Hu et al, ICLR 2022]



𝑊′ = 𝑊0 + 𝐴 ∙ 𝐵

• The original pre-trained weight matrix is fixed. We only need 

to compute the gradients with respect to A and B.
𝜕𝐿

𝜕𝐴
= 𝑔𝑜𝑢𝑡 ∙

𝜕 𝑊0𝑥 + 𝐴 ∙ 𝐵𝑥

𝜕𝐴
= 𝑔𝑜𝑢𝑡 ∙ 𝐵𝑥 𝑇

𝜕𝐿

𝜕𝐵
= 𝑔𝑜𝑢𝑡 ∙

𝜕 𝑊0𝑥 + 𝐴 ∙ 𝐵𝑥

𝜕𝐵
= (𝑔𝑜𝑢𝑡

𝑇 ∙ 𝐴)𝑥𝑇
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Backward Computation of LoRA/CIAT



• No need to store original 

parameter states

• Only need to store: 

o original parameters

o adapter weights: 2 x d x r

o adapter gradients: 2 x d x r

o adapter states: first and 

second moments, 2 x d x r

o activations
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Training LoRA/CIAT

Counter-Interference Adapter (CIAT) for Multilingual Machine Translation [Zhu et al, EMNLP 2021]

Low-Rank Adaptation of Large Language Models [Hu et al, ICLR 2022]



• LoRA reduce the number of trainable parameters thus

reducing the GPU memory requirement

• LLaMA 8B:

8B parameters -> 16GB (BF16)

optimizer states -> 48GB (Adam)

• With LoRA/CIAT:

4M parameters -> 8MB

optimizer states -> 24MB (Adam)
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Memory Consumption of LoRA Training



• Reduced Memory Footprint

o no need to store state for frozen params

o LLaMA 8B: 8B → 4M

• Faster Training (fine-tuning) 

o training time

• ➔ Enable fine-tuning of large models, and on smaller 

devices. 

• Inference is as normal LLM.
19

Benefits of LoRA for Large Models



• Tasks

o Natural Language Understanding (NLU): RoBERTa, DeBERTa
▪ Subtasks: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, STS-B

o Natural Language Generation (NLG): GPT-2, GPT-3
▪ Metrics: BLEU, NIST, MET, ROUGE-L, CIDEr

• Six Baselines

o Fine-Tuning, Bias-only or BitFit, Prefix-embedding tuning 

(PreEmbed), Prefix-layer tuning (PreLayer), Adapter tuning, LoRA

Experiments of LoRA



LoRA is more effective than other fine-

tuning methods

NLU Tasks NLG Tasks

LoRA enhances model adaptation with fewer parameters, ensuring both 
efficiency and improved performance



• Increasing rank does not cover more meaningful subspaces 

➔ a low-rank adaptation matrix (r=8)
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How to choose a proper rank in LoRA?



Experiments of LoRA

NLG Stress Test: Scale up to GPT-3 with 175B parameter

Not all methods benefit monotonically from an 
increase in trainable parameters.



LoRA Performance on Math (GSM8K)
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• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter, 

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough
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Outline



• GPTQ is Post-Training Quantization (PTQ): converting the 

weights of an already trained model to a lower precision 

without any retraining. 

• Quantization-Aware Training (QAT): integrates the weight 

conversion process during the training stage. often superior 

model performance. (QLoRA) 
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Quantization-Aware Training



QLoRA = Low-rank + Quantized training

● Major innovations:

○ 4-bit Normal Float for storage

○ Double Quantization

○ Page Optimizer

● BF16 for computation

➔ Reduces the average memory requirements of fine-tuning a 65B 

parameter model from 780GB of GPU memory to 48GB on a single 

GPU.

➔ Preserving performance compared to a 16- bit finetuning
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Overview of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



QLORA has one storage data type (usually 4-bit NormalFloat) 

and a computation data type (BF16)

1. Double Quantize the model weights to NF4 format

2. Double De-quantize the weights to BF16

3. Perform forward and backward pass in BF16

4. Compute weight gradients (BF 16) only for the LoRA 

parameters
33

QLoRA algorithm

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• A 4-bit number can represent 16 values

• Standard quantization (absmax) divides data into equal-

sized bins

o high quantization error for non-uniform distributed data

o lots of data with small difference, all get quantized to the same

value
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4-bit Number



• split weights into blocks of 64 numbers

• Find max abs value ➔ scale

• Normalize the 64 numbers w/ scale ( ො𝑥 =
𝑥

𝑠𝑐𝑎𝑙𝑒
)

• Find the nearest value from a lookup table 
[-1. -0.6962 -0.5251 -0.3949 -0.2844 -0.1848 -0.0911 0. 0.0796 0.1609 0.2461 
0.3379 0.4407 0.5626 0.723 1. ] 

• Output the quantized values (index from lookup table)
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Normal Float 4 bit quantization (NF-4)

[-7, 8]



Illustration: NF-4
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scale = max(abs(x)) = 0.0071
value = 0.0045

normalized value = 0.0045 / 0.0071 = 0.63

-1.              -0.696     -0.525 -0.395 -0.28 -0.18 -0.09 0. 0.08 0.16 0.25 0.34 0.44 0.56      0.72                1.

mapped value = 0.56

quantized value = 6



Exact values of the NF4 data type: 

           

      

37

Constructing NF-4 Lookup Table

probably quantile
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De-quantization of NF-4
-7   -6  -5  -4  -3    6    8

[-1. -0.6962 -0.5251 -0.3949 -0.2844 -0.1848 -0.0911 0. 
0.0796 0.1609 0.2461 0.3379 0.4407 0.5626 0.723 1. ] 

0.5626

e.g. 0.0071

de-quantized value =0.00399

rounding error = 0.0045-0.00399 

= 0.0005



Motivation: While a small blocksize is required for precise 4-
bit quantization, it also has a considerable overhead.

• E.g. using 32-bit constants and a blocksize of 64, quantization constants add 
32/64 = 0.5 bits per parameter on average.

Double Quantization (DQ) quantized the quantization constants 
for additional memory savings.
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Double Quantization for Scale Factors

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• For every block of 64 values, apply NF-4 quantization

• For every block of 256 scales (from NF-4), apply FP8 

quantization, store 2nd scale in FP32
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QLoRA Double Quantization

memory needed: 0.5 + 1/64 + 1/(64*256) * 4 = 0.52 bytes per param



• Store pre-trained weights in NF4 with double quantization
oC1 in FP32 (block size 256), C2 in FP8 (block size 64)

• Apply LoRA, store LoRA weights in BF16

• Store input in BF16, computing (forward/backward/opt) in BF16
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QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



Motivation: When training LLMs, GPU’s OOM error is a common 
problem. 
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Paged Optimizers

Paged optimizers are used to manage memory usage during training.
Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• Using the NVIDIA unified memory which does page-to-page 

transfers between the CPU and GPU for error-free GPU 

processing when the GPU occasionally runs out-of-memory.

o like regular memory paging between CPU RAM and the disk.

o Feature allocates paged memory for the optimizer states which 

are then automatically evicted to CPU during GPU OOM and 

back into GPU memory when memory is needed in the optimizer 

update step

43

Paged Optimizers



Paged Optimizers

44Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• Default LoRA Hyperparameters do not match 16-bit performance

• NF4 yield better performance than 4-bit Float (FP4)
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Performance of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• 4-bit QLoRA matches 16-bit full fine-tuning and 16-bit LoRA performance
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Experiments of QLoRA

Dettmers et al. QLORA: Efficient Finetuning of Quantized LLMs. NeurIPS 2023.



• Overview of Parameter Efficient Fine-Tuning

• LoRA: Low-rank Adaptation (Counter-interference adapter, 

CIAT)

• QLoRA: Quantization + Low-rank training

• Code Walkthrough
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Outline



LoRA Code Walkthrough
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● Define the LoRA Layer



LoRA Code Walkthrough
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● LoRA implement in the 

linear layer

● Initialize the LoRA A and 

B layer

● Freeze the pre-trained 

weight matrix



LoRA Code Walkthrough
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● Train module merge the 

weights of LoRA layer into the 

pre-train weights

● Given an input x, the forward 

process compute the sum of 

the result from two branches:



To train with QLoRA, load the model with the quantization config, then run with

LoRA. BitsAndBytes contains custom wrapper for CUDA quantization operations.

AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-70b", 

quantization_config=BitsAndBytesConfig(

            load_in_4bit=args.bits == 4,

            load_in_8bit=args.bits == 8,

            llm_int8_threshold=6.0,

            llm_int8_has_fp16_weight=False,

            bnb_4bit_compute_dtype=compute_dtype,

            bnb_4bit_use_double_quant=args.double_quant,

            bnb_4bit_quant_type=args.quant_type,))

QLoRA code
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Inference Demo:

https://github.com/artidoro/qlora/blob/main/examples/guanaco_7B_demo_colab.ipynb

https://github.com/artidoro/qlora/blob/main/examples/guanaco_7B_demo_colab.ipynb


• LoRA/CIAT enables cost-effective adaptation of large 

models by modifying fewer parameters (low-rank).

• Scalability: Effective for giant models like GPT-3, making 

adaptation more accessible.

• Low-Data Efficacy: Superior in low-data settings, reducing 

the need for large datasets.
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Summary



• QLoRA: double quantizing weights using NF4, computing in 

BF16

• QLoRA matches original Low-rank Adapter performance.

• 1st method that enables fine-tuning of 33B LLM on a single 

consumer GPU

54

Summary
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