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Highlights from GTC 2025

NVIDIA Dynamo, A Low-Latency
Distributed Inference Framework G B?)OO G PU

(we already cover inference GPU Memory 288 GB
acceleration and will cover more about

serving later)

NVIDIA CUDA-X
about 300 GPU-accelerated microservices and libraries for

Al, data processing, HPC



Quantize a Number to Int8

* Absmax quant » /Zero-point qu%gwt
127 _
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Outline
. GPTQ

« Code Walkthrough



Overall iIdea of GPTQ

. solving layer-wise guantization.
argmin”WX — I//I\/XH2
W 2

. Key idea:
o Quantizes one column-block of weights at a time

o Updates all the not-yet-quantized weights, to compensate for the
error incurred by quantizing a single weight

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023.
Optimal Brain Surgeon and General Network Pruning (1993)
Optimal Brain Compression: A framework for accurate post-training quantization and pruning (2022)



GPTQ algorithm

1. Pre-compute Cholesky decomposition of the Hessian
inverse for input X

2. lteratively handle one batch of columns of weights W

1.
2.
3.
4.

it quantizes the weights using a specific rounding,
calculates the rounding error
updates the weights in the column block accordingly.

After processing the batch, it updates all remaining weights
based on the block’s errors.



GPTQ: Pre-compute
G = Cholesky((2X - XT + A)~1)T Cholesky

Inverse Layer Hessian . _ o
(Cholesky Form) Weight Matrix / Block decomposition,

given a
symmetric
positive-definite
matrix A
A=L-L"

block i quantized recursively
column-by-column

i . unquantized weights
[ quantized weights [RRIT] 00 2T e

computed initially




GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4 ~ cJrrentcolumn |
/ 1. quantize the column weights
(e.g. using Int8 or Int4)
q.j = quant(W, ;)

quantized
plocK




GPTQ: Block-wise Quantize and Update

current column

1. quantize the column weights
(e.g. using Int8 or Int4)
q.j = quant(W. ;)
2. calculates the rounding error
E.ioi=W.,;—0.;)/Gj;

weight matrix W, block size B=4
I

quantized
plocK




GPTQ: Block-wise Quantize and Update

current column

1. quantize the column weights
(e.g. using Int8 or Int4)
q.; = quant(W., ;)
2. calculates the rounding error
E.ioi=W.,;—0.;)/Gj;
3. updates the weights in the
column block

weight matrix W, block size B=4
I

W.j.ci+B)
=W, j.i+p) — Erj-i * Gj j:i+B)

quantized
plocK
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GPTQ: Lazy-update for rest weights

. . . rrent column
weight matrix W, block size B=4 ~ currentcou | |
i L/ 1. quantize the column weights
’ (e.g. using Int8 or Int4)
q.j = quant(W. ;)

2. calculates the rounding error

Eji=W.,—0.;)/Gj;
3. updates the weights in the

column block

W.j.ci+B)
=W.ji+B) = E.j-i * Gjjii+B)

quantized |cufrent bl
DIOCK

After compute the current block
1. update remaining weights
W.(i+B):

= W.(i+): — E - Gi:(i+B) (i+B):

11




GPTQ Algorithm

Algorithm 1 Quantize W given inverse Hessian H~! = (2XX " 4+ AI)~! and blocksize B.

Q A Ddlﬂﬁ'x{icnl
E + udm.,,:n{E
H™" + Cholesky(H™')"
fori =0,B,2B,... do
forj=1i,...,i+ B—1do
Q.; < quant(W. ;)
E. i+ (W.,;—-Q.)/H"]
W.ji+8) & W jii+m) — Eij—i - H
end for

1
W:,f£+E}: — W:,{HE]: -E- Hz’:{i+E},ft'—|—E‘]:
end for

ivji(i+B)

// quantized output
// block quantization errors

// Hessian inverse information =G in previous
slides

// quantize column
// quantization error
// update weights in block

// update all remaining weights

12



Why GPTQ works?

* Quantize one weight in W can be solved using the Optimal
Brain Surgeon method (OBS)

o = We can update one column of weights

* [teratively updating the inverse Hessian can be updated
efficiently (rank-1 update using Optimal Brain Quantization,
OBQ method)

o = Using Cholesky to pre-compute

« Updating weights after calculating rounding errors can be
done in batch and lazy-fashion

13



Optimal Brain Surgeon

Taylor approximation to find optimal single weight to remove, and optimal
update of remaining weights to compensate.

Weight to prune w, which incurs the minimal increase in loss and the

corresponding update of the remaining weights 4, is,
w2 w
= argminw, _1p , 6y = — _1p -H,'
oy PIH 1, [H 1,

In transformers, w,, could potentially be LayerNorm/FeedForward weights

Wp

H is a dxd Hessian matrix where d = d,,,, * d-o;, WhiCch IS expensive to store
and compute with.

H needs to be updated and inverted at O(d) pruning steps with a ©(d?)
complexity. Total runtime O(d*) is too inefficient.

14



Optimal Brain Quantization

OBQ picks the greedy optimal weight,, to quantize next, along with

the update 6 to all unquantized Weightsqin F.

w, — quant(wg)

2
quant\wg ) — w _
. (quant(g) —we)” o wy— quantwy) .
[HE p

! [Hp ']
F
/ pp Lass mp ute: load stored trace elements

full-precision update e \
Weaight Traces Loss
. . . . Changes

quantizes weights iteratively e o T O ) oo e

Mazk Welght

until all weights are quantized. E_,_ HI anll ﬁ_.

= argminw,

Hessian H = 2XX7T ﬁn e //

Less memaory: resolve not pruned wealghts
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1.

Optimal Brain Quantization

Row wise decomposition: OBQ applies OBS per row of the weight
matrix drow

> wix - x|
=1

No Hessian interaction between different rows and so we can work with
the individual d.,; X d.,; H corresponding to each of the d,.,,, rows.

Efficient inverse

Reduces overall costs of this process to 0(d,,,, * d2,;) time and 0(dZ,;)
memory.
1

H1]yq

—1 —1 — _
Ho) = (H™' - H/H,!)
—P 16



Column Update using OBQ

Quantize all rows of weights in same order.
o =¥ column-wise update

F and Hg'are always the same for all rows

as Hp depends only on the layer inputs X5 ,
which are the same for all rows.

Perform update on Hz* only d,,; times, once
per column, rather than d,.,,, * d.o; times, once
per weight.

This reduces the overall runtime
from O(d oy - d3,;) tO
O (max(drow * d?ol' d?ol))-

Inverse Layer Hessian
(Cholesky Form)

Weight Matrix / Block

L

T P

L

computed initially

column-by-column

quantized weights .:

unquantized weights
that are updated

block i/ quantized recursively
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Insight of Arbitrary Update Order for OBQ

OBQ quantizes weights in a specific order defined by the
corresponding errors.

Improvement over quantizing the weights in arbitrary order is
generally small

o quantized weights with large individual error is balanced out by those weights
towards the end of the process

o few other unquantized weights can be adjusted for compensation

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023. 18



Lazy Batch Updates

- Naive column update is not fast in practice Inverse Layer Hessian Weight Matrix / Block

_ (Cholesky Form) e,
o low compute-to-memory-access ratio
o cannot highly utilize GPUs compute. _L'—Ll
. Observation: - T
o Rounding decisions for col i only affected
by updates on this col
o Updates to later columns are irrelevant at SR block | quantized recursivly
. . . column-by-column
this point in the process.
. Efficient update auantzea weigns [ “gznizes veighs

W. i+B): = W.ci+B). — E * Gi.(i+B) (i+B):




Cholesky Pre-computation

Numerical inaccuracies, can become a
major problem at the scale of LLMs,

Hz1' can become indefinite

Observation:
o  Only information required from H,?ql when quantizing

weight g from unquantized Fy, are the elements in row
g starting with the diagonal.

GPTQ leverages Cholesky kernels to
precompute all information from H~1 without any
significant increase in memory consumption.

Inverse Layer Hessian
(Cholesky Form)

Weight Matrix / Block

o

o

L

computed initially

block i quantized recursively

column-by-column

quantized weights .:

unguantized weights
that are updated

20



Research Questions

How is GPT-Q’s perf on small models compared with accurate-but-
expensive methods?

How does GPT-Q’s quantization time scale with model size?

How is GPT-Q’s perf on large models compared with Round-to-
nearest methods?

How does GPT-Q speed up model inference in practical
applications?

Does GPT-Q even work for extreme 2-bit quantization?

21



Experiment Setup

Calibration data randomly sampled from C-4 dataset to
ensure GPT-Q is not task-aware.

Standard uniform per-row asymmetric quantization on the
min-max grid

Quantize on each transformer block (6 layers), with input X
from last quantized block output.

22



How does GPT-Q speed up model inference In practical

applications?

OPT-175B mode (Measured with pipeline parallelism)

GPU FP16 3bit Speedup | GPU reduction
A6000 -48GB | 589ms | 130ms | 4.53x 8 — 2
A100 - 80GB 230ms | 71lms 3.24 X 5—1

Single-batch inference is memory-bound because of GE
dequantization consumes extra compute, the custom kernel reduces

memory access and thus reduces e2e time.

MVs. Although

23



How is GPT-Q’s perf on large models compared with
Round-to-nearest methods?

Perplexity with 4-bit quantizationon OPT

120

100

]
[=]

Perplexity
3

40
20
—
0
125M 350M 1.3B 2.7B 6.7B 13B 30B 668 1758

Model Size

—=RTN-4bit —8=GPTQ-4bit -—-e=Unquantized



How is GPT-Q’s perf on large models compared with
Round-to-nearest methods?

Perplexity with 3-bit quantization on OPT
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1.40E+04
1.20E+04

1.00E+04

Perplexity
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25



How does GPT-Q’s quantization time scale with model
Size?

GPT-Q e ZeroQuant-LKD

1.3B model - 3h

Quantizationtime (h)

200

Model size (B)

* Measured on single A100

26



Does GPT-Q even work for extreme 2-bit quantization?

Perplexity with 2-bit quantization
10

9.5

8.5
: I I

OPT-175B BLOOM

w

o

|

mFP16 mg128 mg64 mg32 m3-bit
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How is GPT-Q’s perf on small models compared with
accurate-but-expensive methods?

Small model perf

BMN18-4bit RMN18-3bit RMN50-4bit RM50-3bit

80
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1
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B AdaRound l.ﬂ.{:i ant EBRECQ ®EOBQ ®EGPTQ #®Unguantized

Fastest pr ior method



Quiz 9

 https.//canvas.cmu.edu/courses/443/73/quizzes/141974
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https://canvas.cmu.edu/courses/44373/quizzes/141974

GPTQ for LLaMA

 hitps://qgithub.com/gwopgwop200/GPTQ-for-LLaMa/

e GPTQn

o https://github.com/gwopgwop200/GPTQ-for-
LLaMa/blob/triton/gptg.py

30


https://github.com/qwopqwop200/GPTQ-for-LLaMa/
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py

GPTQ: Initialization

def __init_ (self, layer):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone() e Reshape weights from the
if isinstance(self.layer, nn.Conv2d): input layer
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W=W.t()
self.rows = W.shape[0]

e Initialize Hessian matrix

self.columns = W.shape[1]
selT.H = torch.zeros((self.columns, self.columns), device=self.dev)

self.nsamples = @

31



GPTQ: Hessian Matrix Update

def add_batch(self, inp, out):
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape([0]

if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.ConvlD):

if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))

inp = inp.t()

if isinstance(self.layer, nn.Conv2d):

unfold = nn.Unfold(
self.layer.kernel_size,
dilation=self. layer.dilation,
padding=self. layer.padding,
stride=self.layer.stride

)

inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)

self.H *= self.nsamples / (self.nsamples + tmp)

self.nsamples += tmp

# inp = inp.float()

inp = math.sqrt(2 / self.nsamples) * inp.float()

# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())

Update Hessian matrix with
information from a new
batch of the input and
output pairs

32



GPTQ: Lazy Batch-Update

for i1 in range(@, self.columns, blocksize):
i2 = min(il + blocksize, self.columns)
count = i2 - il

Wl = W[:, i1:i2].clone() e Processes weight matrix W in blocks.

Q1 = torch.zeros_like(W1)

Errl = torch.zeros_like(Wl) . . .

Losses1 = torch.zeros Like(Wl) e Updates quantlza.tlon paramgters con_d|t|onally

Hinvl = Hinv[il:i2, i1:i2] based on group size and static grouping
settings.

for i in range(count):
w=Wl[:, i]
d = Hinv1[i, il

if groupsize != -1:
if not static_groups:
if (i1 + i) % groupsize == @:
self.quantizer.find_params(W([:, (il + i):(il + i + groupsize)], weight=True)
else:
idx = 11 + 1
if actorder:
idx = perm[idx]
self.quantizer = groups[idx // groupsize]

33



GPTQ: Lazy Batch-Update

q = quantize(
w.unsqueeze(l), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq

). flatten()

01l:,: 1] ='q

Lossesl[:, 1] = (w - q) *x 2 / d %k 2

e Applies quantization function quantize to
weights and computes the loss due to

errl = (w-gq) / d quantization.

Wi[:, i:] -= errl.unsqueeze(l).matmul(Hinv1l([i, i:].unsqueeze(0))

Ervil:; 11 = 1 ' ini |
rrif:, i] = err e Adjusts remaining block weights based on

ol:, i1:i2] = Q1 quantization error to minimize the overall error.

Losses[:, 11:i2] = Lossesl / 2

Wl:, i2:] -= Errl.matmul(Hinv[il:1i2, i2:])

34



damp
diag
H[di
H =
H =
H =
Hinv

GPTQ: Cholesky Reformulation

= percdamp * torch.mean(torch.diag(H))

= torch.arange(self.columns, device=self.dev)
ag, diag] += damp
torch. linalg.cholesky(H)
torch.cholesky_inverse(H)
torch. linalg.cholesky(H, upper=True)

= H

Applies damping to the Hessian
matrix diagonals

Performs Cholesky decomposition
and inversion

Transforms the Hessian into its
inverse.
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import random
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

from datasets import load_dataset
import torch

from transformers import AutoTokenizer

# Define base model and output directory
model_id = "gpt2” #modify to your model
out_dir = model_id + "-GPTQ”

# Load quantize config, model and tokenizer

guantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)

tokenizer = AutoTokenizer.from_pretrained(model_id)

# Load data and tokenize examples

n_samples = 1024

data = load_dataset("allenai/c4", data_files="en/c4-train.00001-0f-01024.json.gz", split=f"train[:{n_samples*5}]")
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors="pt')

# Format tokenized examples

examples_ids =[]

for _inrange(n_samples):

i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)
j =i+ tokenizer.model_max_length

input_ids = tokenized_data.input_ids[:, i:j]

attention_mask = torch.ones_like(input_ids)

examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})

# Quantize with GPTQ
model.quantize(examples_ids, batch_size=1, use_triton=True)

# Save model and tokenizer
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir)

36



Summary and Limitations
. GPTQ

o approximate second-order of weights

o accurately compress some of the largest publicly-available
models down to 3 and 4 bits, and bring end-to-end speedups

* Limitations
o Theoretical computation is the same

o Focus on weight quantization, and does not consider activation
quantization

37
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