

11868 LLM Systems LLM Quantization - GPTQ

Lei Li

Carnegie Mellon University

Language Technologies Institute

Ack: Kath Choi, Aashiq Muhamed, Zhen Wu, Hongyi Jin, Wayne Wang

Highlights from GTC 2025

NVIDIA Dynamo, A Low-Latency
Distributed Inference Framework
(we already cover inference
acceleration and will cover more about
serving later)

GB300 GPU

GPU Memory 288 GB

NVIDIA CUDA-X about 300 GPU-accelerated microservices and libraries for AI, data processing, HPC

Quantize a Number to Int8

Absmax quant

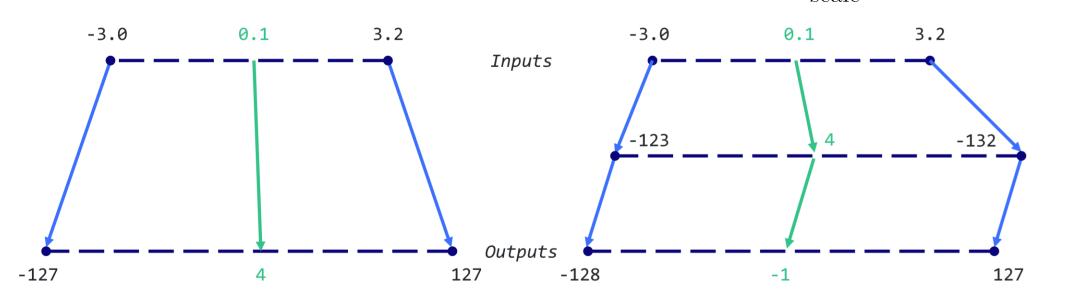
$$\mathbf{X}_{\mathrm{quant}} = \mathrm{round} \left(\frac{127}{\mathrm{max} |\mathbf{X}|} \cdot \mathbf{X} \right)$$
 $\mathbf{X}_{\mathrm{dequant}} = \frac{\mathrm{max} |\mathbf{X}|}{127} \cdot \mathbf{X}_{\mathrm{quant}}$

• Zero-point quant
$$scale = \frac{255}{\max(\mathbf{X}) - \min(\mathbf{X})}$$

$$zeropoint = -round(scale \cdot \min(\mathbf{X})) - 128$$

$$\mathbf{X}_{quant} = round\left(scale \cdot \mathbf{X} + zeropoint\right)$$

$$\mathbf{X}_{dequant} = \frac{\mathbf{X}_{quant} - zeropoint}{scale}$$



Outline

- GPTQ
- Code Walkthrough

Overall idea of GPTQ

solving layer-wise quantization.

$$\underset{\widehat{W}}{\operatorname{argmin}} \|WX - \widehat{W}X\|_{2}^{2}$$

- Key idea:
 - Quantizes one column-block of weights at a time
 - Updates all the not-yet-quantized weights, to compensate for the error incurred by quantizing a single weight

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023.

Optimal Brain Surgeon and General Network Pruning (1993)

GPTQ algorithm

- 1. Pre-compute Cholesky decomposition of the Hessian inverse for input X
- 2. Iteratively handle one batch of columns of weights W
 - 1. it quantizes the weights using a specific rounding,
 - 2. calculates the rounding error
 - 3. updates the weights in the column block accordingly.
 - 4. After processing the batch, it updates all remaining weights based on the block's errors.

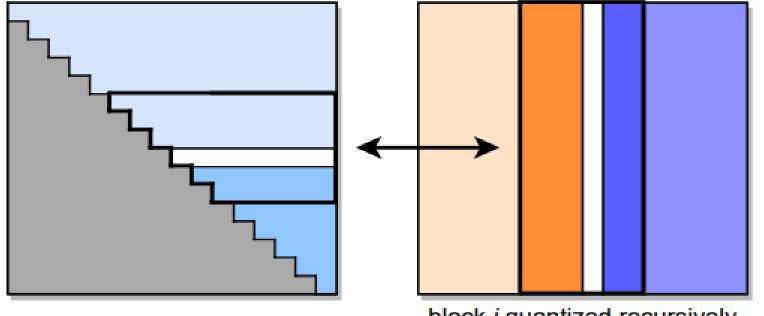
GPTQ: Pre-compute

 $G = \text{Cholesky}((2X \cdot X^T + \lambda I)^{-1}))^T$

Inverse Layer Hessian (Cholesky Form)

computed initially

Weight Matrix / Block



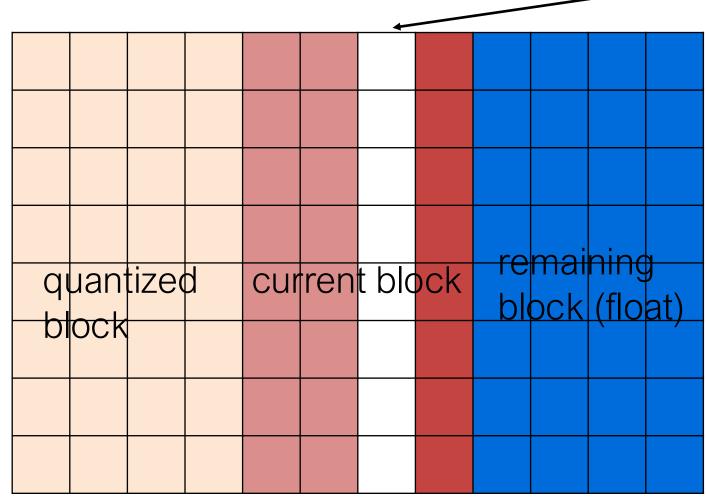
block i quantized recursively column-by-column

Cholesky decomposition, given a symmetric positive-definite matrix A $A = L \cdot L^T$

GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4

current column



1. quantize the column weights (e.g. using int8 or int4) $q_{:,i} = \text{quant}(W_{:,i})$

GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4

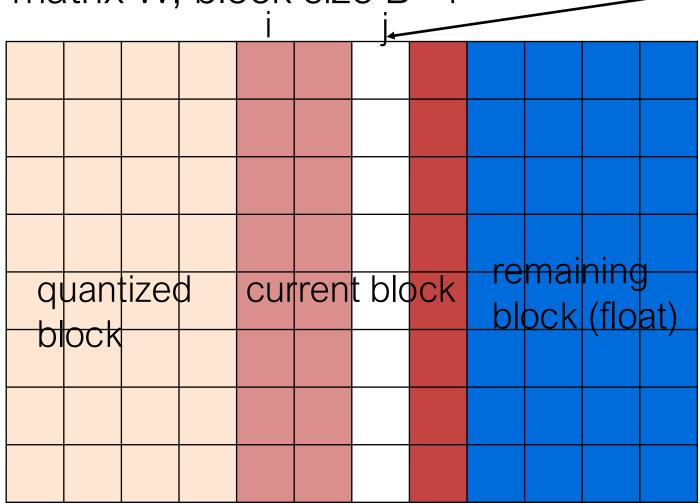
current block quantized block

current column

- quantize the column weights (e.g. using int8 or int4) $q_{:,i} = \operatorname{quant}(W_{:,i})$
- 2. calculates the rounding error $E_{:,i-i} = (W_{:,i} - Q_{:,i})/G_{i,i}$

GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4 current column

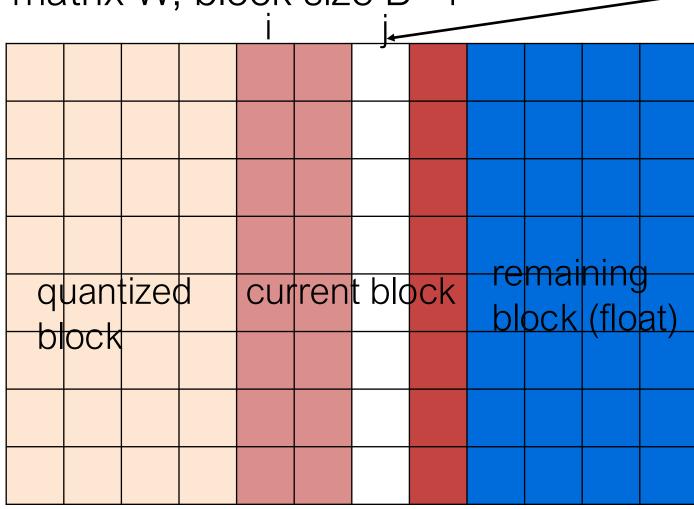


- 1. quantize the column weights (e.g. using int8 or int4) $q_{:,i} = \text{quant}(W_{:,i})$
- 2. calculates the rounding error $E_{:,j-i} = (W_{:,j} Q_{:,j})/G_{j,j}$
- 3. updates the weights in the column block

$$W_{:,j:(i+B)} = W_{:,j:(i+B)} - E_{:,j-i} \cdot G_{j,j:(i+B)}$$

GPTQ: Lazy-update for rest weights

weight matrix W, block size B=4 current column



- 1. quantize the column weights (e.g. using int8 or int4) $q_{:,i} = \text{quant}(W_{:,i})$
- 2. calculates the rounding error $E_{:,j-i} = (W_{:,j} Q_{:,j})/G_{j,j}$
- 3. updates the weights in the column block

$$W_{:,j:(i+B)} = W_{:,j:(i+B)} - E_{:,j-i} \cdot G_{j,j:(i+B)}$$

After compute the current block

1. update remaining weights

$$W_{:,(i+B):}$$

= $W_{:,(i+B):} - E \cdot G_{i:(i+B),(i+B):}$

GPTQ Algorithm

Algorithm 1 Quantize W given inverse Hessian $\mathbf{H}^{-1} = (2\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I})^{-1}$ and blocksize B.

```
\mathbf{Q} \leftarrow \mathbf{0}_{d_{\text{row}} \times d_{\text{col}}}
                                                                                                   // quantized output
\mathbf{E} \leftarrow \mathbf{0}_{d_{\text{row}} \times B}
                                                                                                   // block quantization errors
\mathbf{H}^{-1} \leftarrow \text{Cholesky}(\mathbf{H}^{-1})^{\top}
                                                                                                   // Hessian inverse information =G in previous
for i = 0, B, 2B, ... do
                                                                                                                                                         slides
    for j = i, ..., i + B - 1 do
         \mathbf{Q}_{:,j} \leftarrow \text{quant}(\mathbf{W}_{:,j})
                                                                                                   // quantize column
         \mathbf{E}_{:,j-i} \leftarrow (\mathbf{W}_{:,j} - \mathbf{Q}_{:,j}) / [\mathbf{H}^{-1}]_{ij}
                                                                                                   // quantization error
         \mathbf{W}_{:,j:(i+B)} \leftarrow \mathbf{W}_{:,j:(i+B)} - \mathbf{E}_{:,j-i} \cdot \mathbf{H}_{i,j:(i+B)}^{-1}
                                                                                                   // update weights in block
    end for
     \mathbf{W}_{:,(i+B):} \leftarrow \mathbf{W}_{:,(i+B):} - \mathbf{E} \cdot \mathbf{H}_{i:(i+B),(i+B):}^{-1}
                                                                                                   // update all remaining weights
end for
```

Why GPTQ works?

- Quantize one weight in W can be solved using the Optimal Brain Surgeon method (OBS)
 - → We can update one column of weights
- Iteratively updating the inverse Hessian can be updated efficiently (rank-1 update using Optimal Brain Quantization, OBQ method)
 - → Using Cholesky to pre-compute
- Updating weights after calculating rounding errors can be done in batch and lazy-fashion

Optimal Brain Surgeon

- Taylor approximation to find optimal single weight to remove, and optimal update of remaining weights to compensate.
- Weight to prune ω_p which incurs the minimal increase in loss and the corresponding update of the remaining weights δ_p is,

$$\omega_p = \underset{\omega_p}{\operatorname{argmin}} \omega_p \frac{\omega_p^2}{[H^{-1}]_{pp}}, \delta_p = -\frac{\omega_p}{[H^{-1}]_{pp}} \cdot H_{:,p}^{-1},$$

In transformers, ω_p could potentially be LayerNorm/FeedForward weights

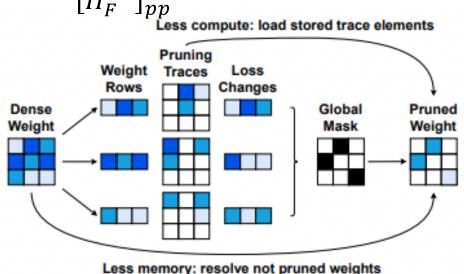
- H is a d×d Hessian matrix where $d = d_{row} \cdot d_{col}$, which is expensive to store and compute with.
- H needs to be updated and inverted at O(d) pruning steps with a Θ(d³) complexity. Total runtime O(d⁴) is too inefficient.

Optimal Brain Quantization

• OBQ picks the greedy optimal weight w_q to quantize next, along with the update δ_F to all unquantized weights in F.

$$w_q = arg \min w_q \frac{\left(quant(w_q) - w_q\right)^2}{[H_F^{-1}]_{pp}}, \delta_F = -\frac{w_q - quant(w_q)}{[H_F^{-1}]_{pp}} \cdot (H_F^{-1})_{:,q}.$$
 full-precision
$$\text{update}$$

- quantizes weights iteratively until all weights are quantized.
- Hessian $H = 2XX^T$



Optimal Brain Quantization

1. Row wise decomposition: OBQ applies OBS per row of the weight matrix $\frac{d_{row}}{d_{row}}$

$$\sum_{i=1}^{a_{row}} \|W_{i,:}X - \widehat{W_{i,:}}X\|_{2}^{2}$$

No Hessian interaction between different rows and so we can work with the individual $d_{col} \times d_{col}$ H corresponding to each of the d_{row} rows.

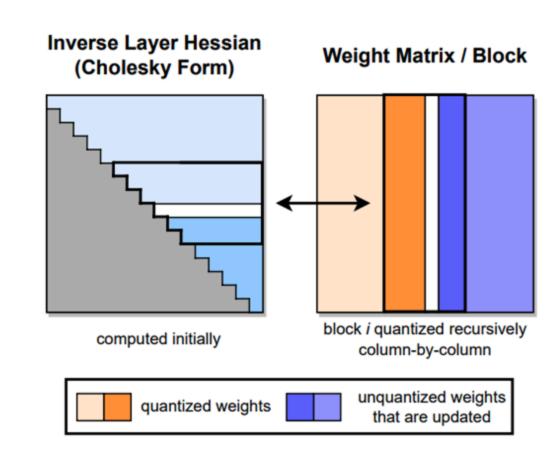
2. Efficient inverse

Reduces overall costs of this process to $O(d_{row} \cdot d_{col}^3)$ time and $O(d_{col}^2)$ memory.

$$\mathbf{H}_{-q}^{-1} = \left(\mathbf{H}^{-1} - \frac{1}{[\mathbf{H}^{-1}]_{qq}} \mathbf{H}_{:,q}^{-1} \mathbf{H}_{q,:}^{-1}\right)_{-p}$$

Column Update using OBQ

- Quantize all rows of weights in same order.
 - → column-wise update
- F and H_F^{-1} are always the same for all rows as H_F depends only on the layer inputs X_F , which are the same for all rows.
- Perform update on H_F^{-1} only d_{col} times, once per column, rather than $d_{row} \cdot d_{col}$ times, once per weight.
- This reduces the overall runtime from $O(d_{row} \cdot d_{col}^3)$ to $O(max(d_{row} \cdot d_{col}^2, d_{col}^3))$.

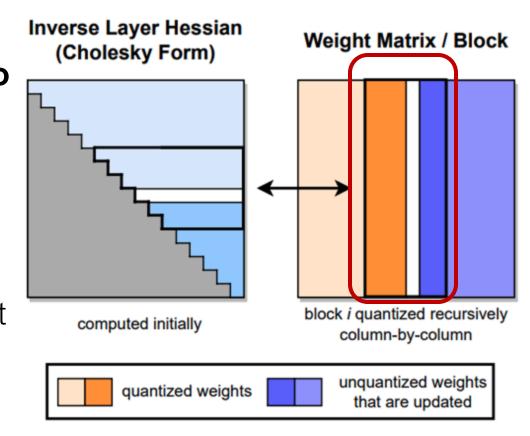


Insight of Arbitrary Update Order for OBQ

- OBQ quantizes weights in a specific order defined by the corresponding errors.
- Improvement over quantizing the weights in arbitrary order is generally small
 - quantized weights with large individual error is balanced out by those weights towards the end of the process
 - few other unquantized weights can be adjusted for compensation

Lazy Batch Updates

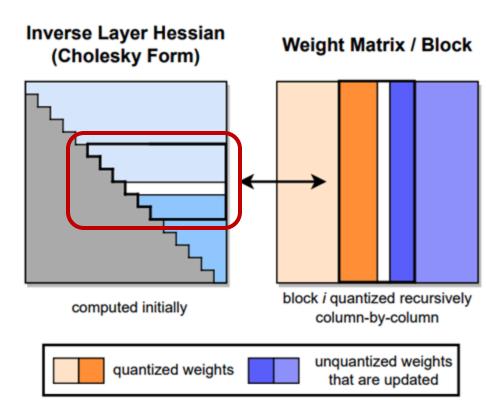
- Naïve column update is not fast in practice
 - low compute-to-memory-access ratio
 - cannot highly utilize GPUs compute.
- Observation:
 - Rounding decisions for col i only affected by updates on this col
 - Updates to later columns are irrelevant at this point in the process.
- Efficient update



$$W_{:,(i+B):} = W_{:,(i+B):} - E \cdot G_{i:(i+B),(i+B):}$$

Cholesky Pre-computation

- Numerical inaccuracies, can become a major problem at the scale of LLMs,
- H_F^{-1} can become indefinite
- Observation:
 - Only information required from $H_{F_q}^{-1}$ when quantizing weight q from unquantized F_q , are the elements in row q starting with the diagonal.
- GPTQ leverages **Cholesky kernels** to precompute all information from H^{-1} without any significant increase in memory consumption.



Research Questions

- How is GPT-Q's perf on small models compared with accurate-butexpensive methods?
- How does GPT-Q's quantization time scale with model size?
- How is GPT-Q's perf on large models compared with Round-tonearest methods?
- How does GPT-Q speed up model inference in practical applications?
- Does GPT-Q even work for extreme 2-bit quantization?

Experiment Setup

- Calibration data randomly sampled from C-4 dataset to ensure GPT-Q is not task-aware.
- Standard uniform per-row asymmetric quantization on the min-max grid
- Quantize on each transformer block (6 layers), with input X from last quantized block output.

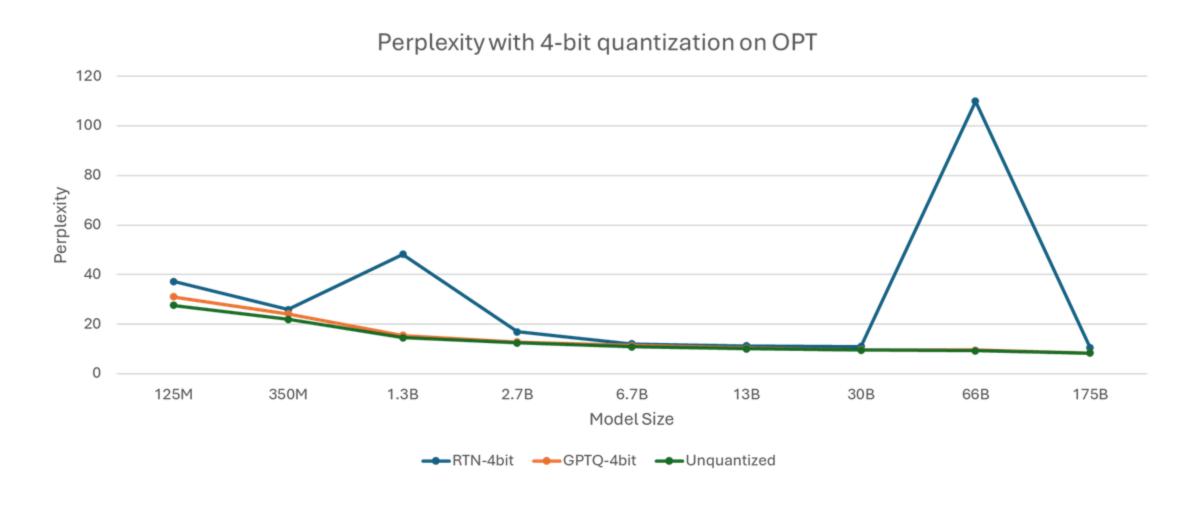
How does GPT-Q speed up model inference in practical applications?

OPT-175B mode (Measured with pipeline parallelism)

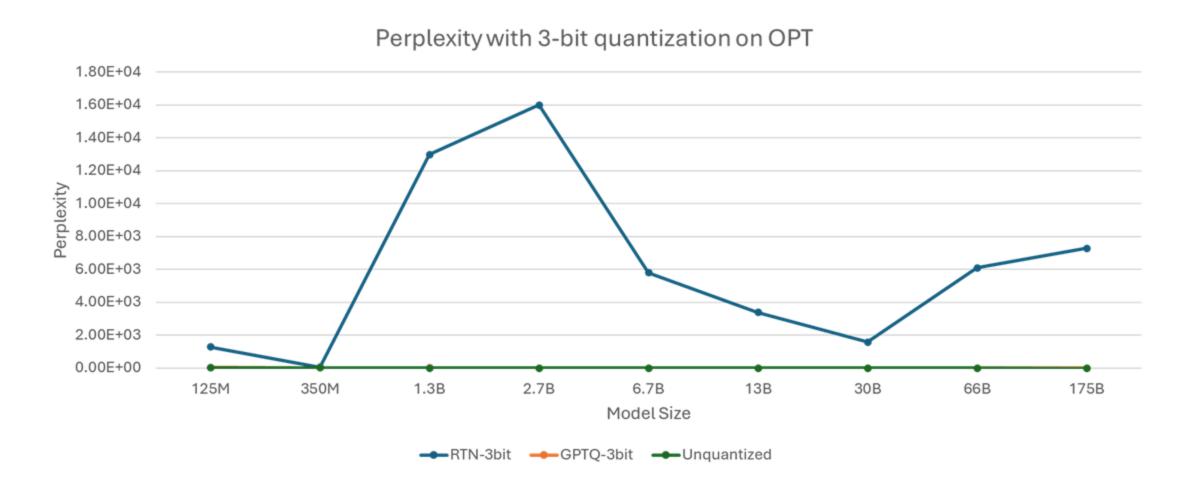
GPU	FP16	3bit	Speedup	GPU reduction
A6000 – 48GB	589ms	130ms	$4.53 \times$	$8 \rightarrow 2$
A100 - 80GB	230ms	71ms	$3.24 \times$	5 o 1

 Single-batch inference is memory-bound because of GEMVs. Although dequantization consumes extra compute, the custom kernel reduces memory access and thus reduces e2e time.

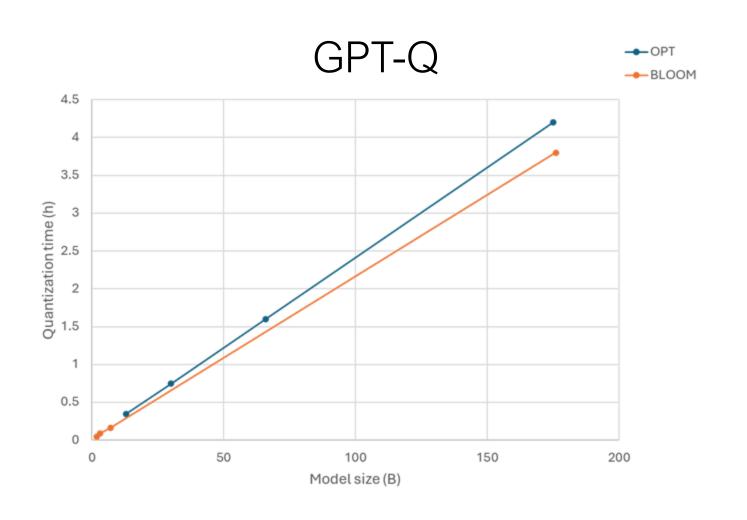
How is GPT-Q's perf on large models compared with Round-to-nearest methods?



How is GPT-Q's perf on large models compared with Round-to-nearest methods?



How does GPT-Q's quantization time scale with model size?

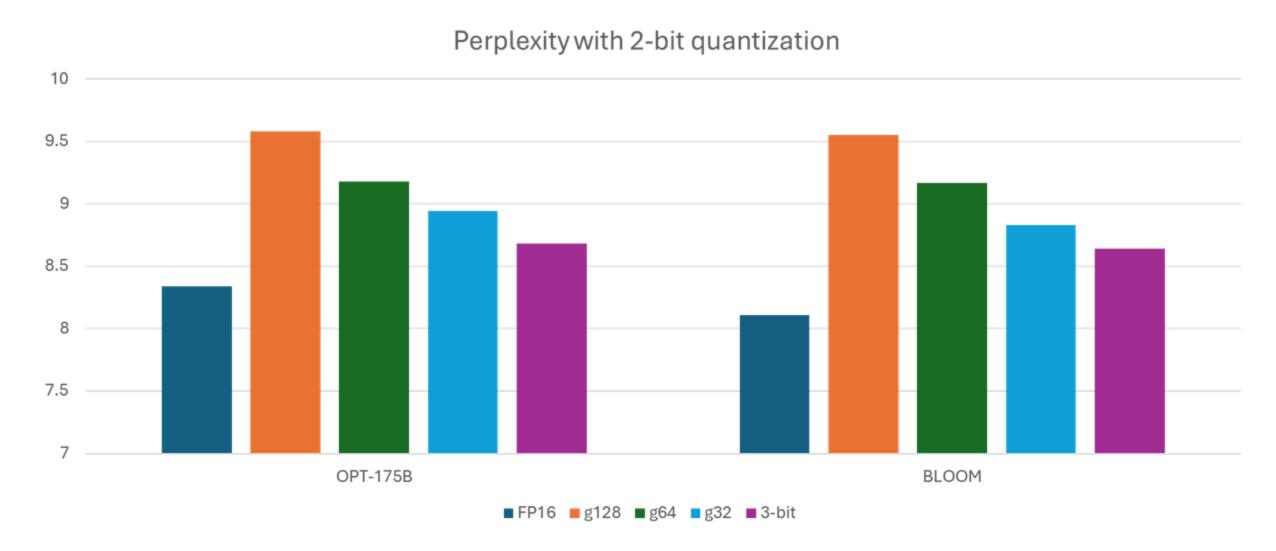


ZeroQuant-LKD

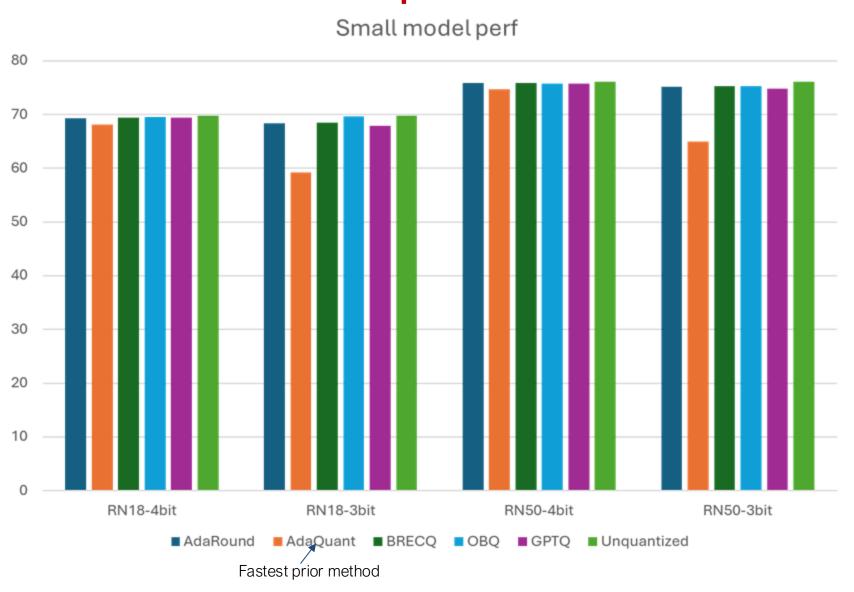
1.3B model - 3h

^{*} Measured on single A100

Does GPT-Q even work for extreme 2-bit quantization?



How is GPT-Q's perf on small models compared with accurate-but-expensive methods?



Quiz 9

• https://canvas.cmu.edu/courses/44373/quizzes/141974

GPTQ for LLaMA

- https://github.com/qwopqwop200/GPTQ-for-LLaMa/
- GPTQ in
 - https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py

GPTQ: Initialization

```
def __init__(self, layer):
    self.layer = layer
    self.dev = self.layer.weight.device
                                                             Reshape weights from the
    W = layer.weight.data.clone()
    if isinstance(self.layer, nn.Conv2d):
                                                             input layer
        W = W_{\bullet} flatten(1)
       isinstance(self.layer, transformers.Conv1D):
        W = W_{\bullet}t()
                                                             Initialize Hessian matrix
    self.rows = W.shape[0]
    self.columns = W.shape[1]
    self.H = torch.zeros((self.columns, self.columns), device=self.dev)
    self.nsamples = 0
```

GPTQ: Hessian Matrix Update

```
def add_batch(self, inp, out):
 if len(inp.shape) == 2:
     inp = inp.unsqueeze(0)
 tmp = inp.shape[0]
 if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.Conv1D):
     if len(inp.shape) == 3:
         inp = inp.reshape((-1, inp.shape[-1]))
     inp = inp.t()
 if isinstance(self.layer, nn.Conv2d):
     unfold = nn.Unfold(
         self.layer.kernel_size,
         dilation=self.layer.dilation,
         padding=self.layer.padding,
         stride=self.layer.stride
     inp = unfold(inp)
     inp = inp.permute([1, 0, 2])
     inp = inp.flatten(1)
 self.H *= self.nsamples / (self.nsamples + tmp)
 self.nsamples += tmp
 # inp = inp.float()
 inp = math.sqrt(2 / self.nsamples) * inp.float()
 # self.H += 2 / self.nsamples * inp.matmul(inp.t())
 self.H += inp.matmul(inp.t())
```

 Update Hessian matrix with information from a new batch of the input and output pairs

GPTQ: Lazy Batch-Update

```
for i1 in range(0, self.columns, blocksize):
    i2 = min(i1 + blocksize, self.columns)
    count = i2 - i1

W1 = W[:, i1:i2].clone()
    Q1 = torch.zeros_like(W1)
    Err1 = torch.zeros_like(W1)
    Losses1 = torch.zeros_like(W1)
    Hinv1 = Hinv[i1:i2, i1:i2]

for i in range(count):
    w = W1[:, i]
    d = Hinv1[i, i]
```

- Processes weight matrix W in blocks.
- Updates quantization parameters conditionally based on group size and static grouping settings.

```
if groupsize != -1:
    if not static_groups:
        if (i1 + i) % groupsize == 0:
            self.quantizer.find_params(W[:, (i1 + i):(i1 + i + groupsize)], weight=True)
    else:
        idx = i1 + i
        if actorder:
            idx = perm[idx]
        self.quantizer = groups[idx // groupsize]
```

GPTQ: Lazy Batch-Update

W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])

GPTQ: Cholesky Reformulation

```
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.dev)
H[diag, diag] += damp
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
Hinv = H
```

- Applies damping to the Hessian matrix diagonals
- Performs Cholesky decomposition and inversion
- Transforms the Hessian into its inverse.

```
import random from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from datasets import load_dataset import torch from transformers import AutoTokenizer
```

AutoGPTQ Tool

```
from transformers import AutoTokenizer
# Define base model and output directory
model id = "gpt2" #modify to your model
out dir = model id + "-GPTQ"
# Load quantize config, model and tokenizer
quantize config = BaseQuantizeConfig(bits=4, group size=128, damp percent=0.01, desc act=False)
model = AutoGPTQForCausalLM.from pretrained(model id, quantize config)
tokenizer = AutoTokenizer.from pretrained(model id)
# Load data and tokenize examples
n samples = 1024
data = load dataset("allenai/c4", data files="en/c4-train.00001-of-01024.json.gz", split=f"train[:{n samples*5}]")
tokenized data = tokenizer("\n\n".join(data['text']), return tensors='pt')
# Format tokenized examples
examples ids = []
for in range(n samples):
i = random.randint(0, tokenized data.input ids.shape[1] - tokenizer.model max length - 1)
j = i + tokenizer.model max length
input ids = tokenized data.input ids[:, i:j]
attention mask = torch.ones like(input ids)
examples ids.append({'input ids': input ids, 'attention mask': attention mask})
# Quantize with GPTQ
model.quantize(examples ids, batch size=1, use triton=True)
# Save model and tokenizer
model.save quantized(out dir, use safetensors=True)
tokenizer.save pretrained(out dir)
```

Summary and Limitations

GPTQ

- o approximate second-order of weights
- accurately compress some of the largest publicly-available models down to 3 and 4 bits, and bring end-to-end speedups

Limitations

- Theoretical computation is the same
- Focus on weight quantization, and does not consider activation quantization