
11868 LLM Systems

LLM Quantization - GPTQ

Lei Li

Ack: Kath Choi, Aashiq Muhamed, Zhen Wu, Hongyi Jin, Wayne Wang

GPU Memory 288 GB

2

Highlights from GTC 2025

GB300 GPU
NVIDIA Dynamo, A Low-Latency
Distributed Inference Framework
(we already cover inference
acceleration and will cover more about
serving later)

NVIDIA CUDA-X

about 300 GPU-accelerated microservices and libraries for

AI, data processing, HPC

• Absmax quant • Zero-point quant

3

Quantize a Number to Int8

4

Outline

• GPTQ

• Code Walkthrough

• solving layer-wise quantization.

argmin
෡𝑊

𝑊𝑋 − ෡𝑊𝑋
2

2

• Key idea:

o Quantizes one column-block of weights at a time

o Updates all the not-yet-quantized weights, to compensate for the

error incurred by quantizing a single weight

5

Overall idea of GPTQ

Optimal Brain Compression: A framework for accurate post-training quantization and pruning (2022)

Optimal Brain Surgeon and General Network Pruning (1993)

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023.

1. Pre-compute Cholesky decomposition of the Hessian

inverse for input X

2. Iteratively handle one batch of columns of weights W

1. it quantizes the weights using a specific rounding,

2. calculates the rounding error

3. updates the weights in the column block accordingly.

4. After processing the batch, it updates all remaining weights

based on the block’s errors.

6

GPTQ algorithm

7

GPTQ: Pre-compute
𝐺 = Cholesky (2𝑋 ∙ 𝑋𝑇 + 𝜆𝐼 −1))𝑇 Cholesky

decomposition,
given a
symmetric
positive-definite
matrix A

𝐴 = 𝐿 ∙ 𝐿𝑇

8

GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4

quantized

block

current block
remaining

block (float)

current column

1. quantize the column weights

(e.g. using int8 or int4)

𝑞:,𝑗 = quant(𝑊:,𝑗)

9

GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4

quantized

block

current block
remaining

block (float)

current column

1. quantize the column weights

(e.g. using int8 or int4)

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

i j

10

GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4

quantized

block

current block
remaining

block (float)

current column

1. quantize the column weights

(e.g. using int8 or int4)

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

3. updates the weights in the

column block

i j

𝑊:,𝑗:(𝑖+𝐵)

= 𝑊:,𝑗:(𝑖+𝐵) − 𝐸:,𝑗−𝑖 ∙ 𝐺𝑗,𝑗:(𝑖+𝐵)

11

GPTQ: Lazy-update for rest weights
weight matrix W, block size B=4

quantized

block

current block
remaining

block (float)

current column

1. quantize the column weights

(e.g. using int8 or int4)

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

3. updates the weights in the

column block

i j

𝑊:,𝑗:(𝑖+𝐵)

= 𝑊:,𝑗:(𝑖+𝐵) − 𝐸:,𝑗−𝑖 ∙ 𝐺𝑗,𝑗:(𝑖+𝐵)

After compute the current block

1. update remaining weights

𝑊:, 𝑖+𝐵 :

= 𝑊:, 𝑖+𝐵 : − 𝐸 ∙ 𝐺𝑖: 𝑖+𝐵 , 𝑖+𝐵 :

GPTQ Algorithm

12

=G in previous

slides

• Quantize one weight in W can be solved using the Optimal

Brain Surgeon method (OBS)

o➔ We can update one column of weights

• Iteratively updating the inverse Hessian can be updated

efficiently (rank-1 update using Optimal Brain Quantization,

OBQ method)

o➔ Using Cholesky to pre-compute

• Updating weights after calculating rounding errors can be

done in batch and lazy-fashion
13

Why GPTQ works?

• Taylor approximation to find optimal single weight to remove, and optimal

update of remaining weights to compensate.

• Weight to prune 𝜔𝑝 which incurs the minimal increase in loss and the

corresponding update of the remaining weights 𝛿𝑝 is,

In transformers, 𝜔𝑝 could potentially be LayerNorm/FeedForward weights

• H is a d×d Hessian matrix where 𝑑 = 𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙, which is expensive to store

and compute with.

• H needs to be updated and inverted at O(d) pruning steps with a Θ(d3)

complexity. Total runtime O(d4) is too inefficient.
14

Optimal Brain Surgeon

𝜔𝑝 = 𝑎𝑟𝑔min
𝜔𝑝

𝜔𝑝

𝜔𝑝
2

𝐻−1
𝑝𝑝

, 𝛿𝑝 = −
𝜔𝑝

𝐻−1
𝑝𝑝

∙ 𝐻:,𝑝 ,
−1

• OBQ picks the greedy optimal weight to quantize next, along with

the update 𝛿𝐹 to all unquantized weights in F.

• quantizes weights iteratively

until all weights are quantized.

• Hessian 𝐻 = 2𝑋𝑋𝑇

15

Optimal Brain Quantization

𝑤𝑞 = 𝑎𝑟𝑔min 𝑤𝑞

𝑞𝑢𝑎𝑛𝑡 𝑤𝑞 − 𝑤𝑞
2

𝐻𝐹
−1

𝑝𝑝

, 𝛿𝐹 = −
𝑤𝑞 − 𝑞𝑢𝑎𝑛𝑡(𝑤𝑞)

𝐻𝐹
−1

𝑝𝑝

∙ (𝐻𝐹
−1):,𝑞∙

full-precision update

1. Row wise decomposition: OBQ applies OBS per row of the weight

matrix

No Hessian interaction between different rows and so we can work with

the individual 𝑑𝑐𝑜𝑙 × 𝑑𝑐𝑜𝑙 H corresponding to each of the 𝑑𝑟𝑜𝑤 rows.

2. Efficient inverse
Reduces overall costs of this process to 𝑂(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙

3) time and 𝑂(𝑑𝑐𝑜𝑙
2)

memory.

16

Optimal Brain Quantization

෍

𝑖=1

𝑑𝑟𝑜𝑤

𝑊𝑖,:𝑋 − ෢𝑊𝑖,:𝑋 2

2

• Quantize all rows of weights in same order.

o ➔ column-wise update

• 𝐹 and 𝐻𝐹
−1are always the same for all rows

as 𝐻𝐹 depends only on the layer inputs 𝑋𝐹 ,

which are the same for all rows.

• Perform update on 𝐻𝐹
−1 only 𝑑𝑐𝑜𝑙 times, once

per column, rather than 𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙 times, once

per weight.

• This reduces the overall runtime

from 𝑂(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙
3) to

𝑂(𝑚𝑎𝑥(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙
2 , 𝑑𝑐𝑜𝑙

3)).
17

Column Update using OBQ

• OBQ quantizes weights in a specific order defined by the

corresponding errors.

• Improvement over quantizing the weights in arbitrary order is

generally small

o quantized weights with large individual error is balanced out by those weights

towards the end of the process

o few other unquantized weights can be adjusted for compensation

18

Insight of Arbitrary Update Order for OBQ

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023.

• Naïve column update is not fast in practice

o low compute-to-memory-access ratio

o cannot highly utilize GPUs compute.

• Observation:

o Rounding decisions for col i only affected

by updates on this col

o Updates to later columns are irrelevant at

this point in the process.

• Efficient update

19

Lazy Batch Updates

𝑊:, 𝑖+𝐵 : = 𝑊:, 𝑖+𝐵 : − 𝐸 ∙ 𝐺𝑖: 𝑖+𝐵 , 𝑖+𝐵 :

• Numerical inaccuracies, can become a

major problem at the scale of LLMs,

• 𝐻𝐹
−1 can become indefinite

• Observation:
o Only information required from 𝐻𝐹𝑞

−1 when quantizing

weight q from unquantized 𝐹𝑞, are the elements in row

q starting with the diagonal.

• GPTQ leverages Cholesky kernels to

precompute all information from 𝐻−1 without any

significant increase in memory consumption.
20

Cholesky Pre-computation

• How is GPT-Q’s perf on small models compared with accurate-but-

expensive methods?

• How does GPT-Q’s quantization time scale with model size?

• How is GPT-Q’s perf on large models compared with Round-to-

nearest methods?

• How does GPT-Q speed up model inference in practical

applications?

• Does GPT-Q even work for extreme 2-bit quantization?

21

Research Questions

• Calibration data randomly sampled from C-4 dataset to

ensure GPT-Q is not task-aware.

• Standard uniform per-row asymmetric quantization on the

min-max grid

• Quantize on each transformer block (6 layers), with input X

from last quantized block output.

22

Experiment Setup

• Single-batch inference is memory-bound because of GEMVs. Although
dequantization consumes extra compute, the custom kernel reduces

memory access and thus reduces e2e time.

23

How does GPT-Q speed up model inference in practical

applications?

OPT-175B mode (Measured with pipeline parallelism)

How is GPT-Q’s perf on large models compared with

Round-to-nearest methods?

24

How is GPT-Q’s perf on large models compared with

Round-to-nearest methods?

25

How does GPT-Q’s quantization time scale with model

size?

26

* Measured on single A100

ZeroQuant-LKDGPT-Q

1.3B model - 3h

Does GPT-Q even work for extreme 2-bit quantization?

27

How is GPT-Q’s perf on small models compared with

accurate-but-expensive methods?

28Fastest prior method

29

Quiz 9

• https://canvas.cmu.edu/courses/44373/quizzes/141974

https://canvas.cmu.edu/courses/44373/quizzes/141974

• https://github.com/qwopqwop200/GPTQ-for-LLaMa/

• GPTQ in

o https://github.com/qwopqwop200/GPTQ-for-

LLaMa/blob/triton/gptq.py

30

GPTQ for LLaMA

https://github.com/qwopqwop200/GPTQ-for-LLaMa/
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py

GPTQ: Initialization

31

● Reshape weights from the

input layer

● Initialize Hessian matrix

GPTQ: Hessian Matrix Update

32

● Update Hessian matrix with

information from a new

batch of the input and

output pairs

GPTQ: Lazy Batch-Update

33

● Processes weight matrix W in blocks.

● Updates quantization parameters conditionally

based on group size and static grouping

settings.

GPTQ: Lazy Batch-Update

34

● Applies quantization function quantize to

weights and computes the loss due to

quantization.

● Adjusts remaining block weights based on

quantization error to minimize the overall error.

GPTQ: Cholesky Reformulation

35

● Applies damping to the Hessian

matrix diagonals

● Performs Cholesky decomposition

and inversion

● Transforms the Hessian into its

inverse.

36

import random
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
import torch
from transformers import AutoTokenizer

Define base model and output directory
model_id = "gpt2” #modify to your model
out_dir = model_id + "-GPTQ”

Load quantize config, model and tokenizer
quantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

Load data and tokenize examples
n_samples = 1024
data = load_dataset("allenai/c4", data_files="en/c4-train.00001-of-01024.json.gz", split=f"train[:{n_samples*5}]")
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors='pt')

Format tokenized examples
examples_ids = []
for _ in range(n_samples):
i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)
j = i + tokenizer.model_max_length
input_ids = tokenized_data.input_ids[:, i:j]
attention_mask = torch.ones_like(input_ids)
examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})

Quantize with GPTQ
model.quantize(examples_ids, batch_size=1, use_triton=True)

Save model and tokenizer
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir)

AutoGPTQ Tool

• GPTQ

o approximate second-order of weights

o accurately compress some of the largest publicly-available

models down to 3 and 4 bits, and bring end-to-end speedups

• Limitations

o Theoretical computation is the same

o Focus on weight quantization, and does not consider activation

quantization

37

Summary and Limitations

	Slide 1: 11868 LLM Systems LLM Quantization - GPTQ
	Slide 2: Highlights from GTC 2025
	Slide 3: Quantize a Number to Int8
	Slide 4: Outline
	Slide 5: Overall idea of GPTQ
	Slide 6: GPTQ algorithm
	Slide 7: GPTQ: Pre-compute
	Slide 8: GPTQ: Block-wise Quantize and Update
	Slide 9: GPTQ: Block-wise Quantize and Update
	Slide 10: GPTQ: Block-wise Quantize and Update
	Slide 11: GPTQ: Lazy-update for rest weights
	Slide 12: GPTQ Algorithm
	Slide 13: Why GPTQ works?
	Slide 14: Optimal Brain Surgeon
	Slide 15: Optimal Brain Quantization
	Slide 16: Optimal Brain Quantization
	Slide 17: Column Update using OBQ
	Slide 18: Insight of Arbitrary Update Order for OBQ
	Slide 19: Lazy Batch Updates
	Slide 20: Cholesky Pre-computation
	Slide 21: Research Questions
	Slide 22: Experiment Setup
	Slide 23: How does GPT-Q speed up model inference in practical applications?
	Slide 24: How is GPT-Q’s perf on large models compared with Round-to-nearest methods?
	Slide 25: How is GPT-Q’s perf on large models compared with Round-to-nearest methods?
	Slide 26: How does GPT-Q’s quantization time scale with model size?
	Slide 27: Does GPT-Q even work for extreme 2-bit quantization?
	Slide 28: How is GPT-Q’s perf on small models compared with accurate-but-expensive methods?
	Slide 29: Quiz 9
	Slide 30: GPTQ for LLaMA
	Slide 31: GPTQ: Initialization
	Slide 32: GPTQ: Hessian Matrix Update
	Slide 33: GPTQ: Lazy Batch-Update
	Slide 34: GPTQ: Lazy Batch-Update
	Slide 35: GPTQ: Cholesky Reformulation
	Slide 36: AutoGPTQ Tool
	Slide 37: Summary and Limitations

