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GPU Memory 288 GB
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Highlights from GTC 2025

GB300 GPU
NVIDIA Dynamo, A Low-Latency 
Distributed Inference Framework
(we already cover inference 
acceleration and will cover more about 
serving later)

NVIDIA CUDA-X

about 300 GPU-accelerated microservices and libraries for 

AI, data processing, HPC



• Absmax quant • Zero-point quant
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Quantize a Number to Int8
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Outline

• GPTQ

• Code Walkthrough



• solving layer-wise quantization.

argmin
෡𝑊

𝑊𝑋 − ෡𝑊𝑋
2
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• Key idea: 

o Quantizes one column-block of weights at a time

o Updates all the not-yet-quantized weights, to compensate for the 

error incurred by quantizing a single weight
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Overall idea of GPTQ

Optimal Brain Compression: A framework for accurate post-training quantization and pruning (2022)

Optimal Brain Surgeon and General Network Pruning (1993)

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023. 



1. Pre-compute Cholesky decomposition of the Hessian 

inverse for input X

2. Iteratively handle one batch of columns of weights W

1. it quantizes the weights using a specific rounding, 

2. calculates the rounding error

3. updates the weights in the column block accordingly.

4. After processing the batch, it updates all remaining weights 

based on the block’s errors.
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GPTQ algorithm
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GPTQ: Pre-compute
𝐺 = Cholesky (2𝑋 ∙ 𝑋𝑇 + 𝜆𝐼 −1))𝑇 Cholesky 

decomposition, 
given a 
symmetric 
positive-definite 
matrix A

𝐴 = 𝐿 ∙ 𝐿𝑇
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GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4 

quantized

block

current block
remaining 

block (float)

current column

1. quantize the column weights

(e.g. using int8 or int4) 

𝑞:,𝑗 = quant(𝑊:,𝑗)
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GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4 

quantized

block

current block
remaining 

block (float)

current column

1. quantize the column weights 

(e.g. using int8 or int4) 

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error 

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

i j
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GPTQ: Block-wise Quantize and Update
weight matrix W, block size B=4 

quantized

block

current block
remaining 

block (float)

current column

1. quantize the column weights 

(e.g. using int8 or int4) 

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error 

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

3. updates the weights in the 

column block  

i j

𝑊:,𝑗:(𝑖+𝐵)

= 𝑊:,𝑗:(𝑖+𝐵) − 𝐸:,𝑗−𝑖 ∙ 𝐺𝑗,𝑗:(𝑖+𝐵)
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GPTQ: Lazy-update for rest weights
weight matrix W, block size B=4 

quantized

block

current block
remaining 

block (float)

current column

1. quantize the column weights 

(e.g. using int8 or int4) 

𝑞:,𝑗 = quant(𝑊:,𝑗)

2. calculates the rounding error 

𝐸:,𝑗−𝑖 = (𝑊:,𝑗 − 𝑄:,𝑗)/𝐺𝑗,𝑗

3. updates the weights in the 

column block  

i j

𝑊:,𝑗:(𝑖+𝐵)

= 𝑊:,𝑗:(𝑖+𝐵) − 𝐸:,𝑗−𝑖 ∙ 𝐺𝑗,𝑗:(𝑖+𝐵)

After compute the current block

1. update remaining weights

𝑊:, 𝑖+𝐵 :

= 𝑊:, 𝑖+𝐵 : − 𝐸 ∙ 𝐺𝑖: 𝑖+𝐵 , 𝑖+𝐵 :



GPTQ Algorithm
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=G in previous 

slides



• Quantize one weight in W can be solved using the Optimal 

Brain Surgeon method (OBS)

o➔ We can update one column of weights

• Iteratively updating the inverse Hessian can be updated 

efficiently (rank-1 update using Optimal Brain Quantization, 

OBQ method)

o➔ Using Cholesky to pre-compute

• Updating weights after calculating rounding errors can be 

done in batch and lazy-fashion
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Why GPTQ works?



• Taylor approximation to find optimal single weight to remove, and optimal 

update of remaining weights to compensate.

• Weight to prune 𝜔𝑝 which incurs the minimal increase in loss and the 

corresponding update of the remaining weights 𝛿𝑝 is,

In transformers, 𝜔𝑝 could potentially be LayerNorm/FeedForward weights

• H is a d×d Hessian matrix where 𝑑 = 𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙, which is expensive to store 

and compute with. 

• H needs to be updated and inverted at O(d) pruning steps with a Θ(d3 ) 

complexity. Total runtime O(d4 ) is too inefficient.
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Optimal Brain Surgeon

𝜔𝑝 = 𝑎𝑟𝑔min
𝜔𝑝

𝜔𝑝

𝜔𝑝
2

𝐻−1
𝑝𝑝

, 𝛿𝑝 = −
𝜔𝑝

𝐻−1
𝑝𝑝

∙ 𝐻:,𝑝 ,
−1



• OBQ picks the greedy optimal weight      to quantize next, along with 

the update 𝛿𝐹  to all unquantized weights in F.

• quantizes weights iteratively 

until all weights are quantized.

• Hessian 𝐻 = 2𝑋𝑋𝑇
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Optimal Brain Quantization

𝑤𝑞 = 𝑎𝑟𝑔min 𝑤𝑞

𝑞𝑢𝑎𝑛𝑡 𝑤𝑞 − 𝑤𝑞
2

𝐻𝐹
−1

𝑝𝑝

, 𝛿𝐹 = −
𝑤𝑞 − 𝑞𝑢𝑎𝑛𝑡(𝑤𝑞)

𝐻𝐹
−1

𝑝𝑝

∙ (𝐻𝐹
−1):,𝑞∙

full-precision update



1. Row wise decomposition: OBQ applies OBS per row of the weight 

matrix

No Hessian interaction between different rows and so we can work with 

the individual  𝑑𝑐𝑜𝑙  × 𝑑𝑐𝑜𝑙 H corresponding to each of the 𝑑𝑟𝑜𝑤  rows. 

2. Efficient inverse
Reduces overall costs of this process to 𝑂(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙

3 )  time and 𝑂(𝑑𝑐𝑜𝑙
2 ) 

memory.
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Optimal Brain Quantization

෍

𝑖=1

𝑑𝑟𝑜𝑤

𝑊𝑖,:𝑋 − ෢𝑊𝑖,:𝑋 2

2



• Quantize all rows of weights in same order.

o ➔ column-wise update

• 𝐹 and  𝐻𝐹
−1are always the same for all rows 

as 𝐻𝐹  depends only on the layer inputs 𝑋𝐹 , 

which are the same for all rows.

• Perform update on 𝐻𝐹
−1 only 𝑑𝑐𝑜𝑙 times, once 

per column, rather than 𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙 times, once 

per weight. 

• This reduces the overall runtime 

from 𝑂(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙
3 ) to 

𝑂(𝑚𝑎𝑥(𝑑𝑟𝑜𝑤 ∙ 𝑑𝑐𝑜𝑙
2 , 𝑑𝑐𝑜𝑙

3 )).
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Column Update using OBQ



• OBQ quantizes weights in a specific order defined by the 

corresponding errors.

• Improvement over quantizing the weights in arbitrary order is 

generally small

o quantized weights with large individual error is balanced out by those weights 

towards the end of the process

o few other unquantized weights can be adjusted for compensation
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Insight of Arbitrary Update Order for OBQ

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023. 



• Naïve column update is not fast in practice 

o low compute-to-memory-access ratio

o cannot highly utilize GPUs compute.

• Observation: 

o Rounding decisions for col i only affected 

by updates on this col

o Updates to later columns are irrelevant at 

this point in the process.

• Efficient update
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Lazy Batch Updates

𝑊:, 𝑖+𝐵 : = 𝑊:, 𝑖+𝐵 : − 𝐸 ∙ 𝐺𝑖: 𝑖+𝐵 , 𝑖+𝐵 :



• Numerical inaccuracies, can become a 

major problem at the scale of LLMs,

• 𝐻𝐹
−1  can become indefinite

• Observation:
o Only information required from 𝐻𝐹𝑞

−1  when quantizing 

weight q from unquantized 𝐹𝑞, are the elements in row 

q starting with the diagonal. 

• GPTQ leverages Cholesky kernels to 

precompute all information from 𝐻−1 without any 

significant increase in memory consumption.
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Cholesky Pre-computation



• How is GPT-Q’s perf on small models compared with accurate-but-

expensive methods?

• How does GPT-Q’s quantization time scale with model size?

• How is GPT-Q’s perf on large models compared with Round-to-

nearest methods?

• How does GPT-Q speed up model inference in practical 

applications?

• Does GPT-Q even work for extreme 2-bit quantization?
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Research Questions



• Calibration data randomly sampled from C-4 dataset to 

ensure GPT-Q is not task-aware.

• Standard uniform per-row asymmetric quantization on the 

min-max grid

• Quantize on each transformer block (6 layers), with input X 

from last quantized block output.
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Experiment Setup



• Single-batch inference is memory-bound because of GEMVs. Although 
dequantization consumes extra compute, the custom kernel reduces 

memory access and thus reduces e2e time. 
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How does GPT-Q speed up model inference in practical 

applications?

OPT-175B mode (Measured with pipeline parallelism)



How is GPT-Q’s perf on large models compared with 

Round-to-nearest methods?
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How is GPT-Q’s perf on large models compared with 

Round-to-nearest methods?
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How does GPT-Q’s quantization time scale with model 

size?
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* Measured on single A100

ZeroQuant-LKDGPT-Q

1.3B model - 3h



Does GPT-Q even work for extreme 2-bit quantization?
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How is GPT-Q’s perf on small models compared with 

accurate-but-expensive methods?

28Fastest prior method
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Quiz 9

• https://canvas.cmu.edu/courses/44373/quizzes/141974 

https://canvas.cmu.edu/courses/44373/quizzes/141974


• https://github.com/qwopqwop200/GPTQ-for-LLaMa/ 

• GPTQ in 

o https://github.com/qwopqwop200/GPTQ-for-

LLaMa/blob/triton/gptq.py 
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GPTQ for LLaMA

https://github.com/qwopqwop200/GPTQ-for-LLaMa/
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py
https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/gptq.py


GPTQ: Initialization
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● Reshape weights from the 

input layer

● Initialize Hessian matrix



GPTQ: Hessian Matrix Update
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● Update Hessian matrix with 

information from a new 

batch of the input and 

output pairs 



GPTQ: Lazy Batch-Update
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● Processes weight matrix W in blocks.

● Updates quantization parameters conditionally 

based on group size and static grouping 

settings.



GPTQ: Lazy Batch-Update
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● Applies quantization function quantize to 

weights and computes the loss due to 

quantization.

● Adjusts remaining block weights based on 

quantization error to minimize the overall error.



GPTQ: Cholesky Reformulation
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● Applies damping to the Hessian 

matrix diagonals

● Performs Cholesky decomposition 

and inversion

● Transforms the Hessian into its 

inverse.
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import random
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
import torch
from transformers import AutoTokenizer

# Define base model and output directory
model_id = "gpt2” #modify to your model
out_dir = model_id + "-GPTQ”

# Load quantize config, model and tokenizer
quantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Load data and tokenize examples
n_samples = 1024
data = load_dataset("allenai/c4", data_files="en/c4-train.00001-of-01024.json.gz", split=f"train[:{n_samples*5}]")
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors='pt')

# Format tokenized examples
examples_ids = []
for _ in range(n_samples):
i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)
j = i + tokenizer.model_max_length
input_ids = tokenized_data.input_ids[:, i:j]
attention_mask = torch.ones_like(input_ids)
examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})

# Quantize with GPTQ
model.quantize(examples_ids, batch_size=1, use_triton=True)

# Save model and tokenizer
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir)

AutoGPTQ Tool



• GPTQ

o approximate second-order of weights

o accurately compress some of the largest publicly-available 

models down to 3 and 4 bits, and bring end-to-end speedups

• Limitations

o Theoretical computation is the same

o Focus on weight quantization, and does not consider activation 

quantization

37

Summary and Limitations
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