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Recap of Basic Quantization Methods

* |ow-bit number representation in computer

o BF16: 16-bit half precision floating point numbers, better for ML tasks
o INt8

 Direct quantization of numbers
o absmax: linearly scale according to max abs value
o zero-point: finding zero-point and scale

« Layer-wise quantization approaches for NN weights
o AdaQuant
o KD: ZeroQuant
o LLM.int8(): mixed strategy for 8-bit quantization and 16-bit (for outliers)



Quantize a Number to Int8

* Absmax quant » /Zero-point qu%gwt
Koaot = m““d(m;jrm X) e = ax(X) — min(X)
- max |X| zeropoint = —round(scale - min(X)) — 128
dequant — * Lhquant
127 Xquant = round (Scale - X+ zeropoint)
X — zeropoint
X J— quant
dequant scale
-3.0 0.1 3.2 -3.0 0.1 3.2
Inputs
-123 \ 4 -132
Outputs /
-127 4 127 -128 -1 127



GPTQ
e scale to GPT-size LLMs

* maintain accuracy



Overall idea of GPTQ

Revisit layer-wise quantization of weight matrices
argmin”WX — I//I\/XH2
W 2

X: Input data to current layer (d x Len)  W: projection matrix

Key ideas:
1. Quantizes one column-block of weights at a time

2. Updates all the not-yet-quantized weights, to compensate for the
error incurred by quantizing a single weight

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023.
Optimal Brain Surgeon and General Network Pruning (1993)
Optimal Brain Compression: A framework for accurate post-training quantization and pruning (2022)



GPTQ algorithm

1. Pre-compute Cholesky decomposition of the Hessian
inverse for input data X of current (Linear) layer

2. lteratively handle one batch of columns of weight matrix W
guantize the weights using a rounding methoad

calculates the rounding error

updates the weights in the column block accordingly.

After processing the batch, it updates all remaining weights
based on the block’s errors.

W=



Pre-compute Hessian Inverse and Decompose

G = Cholesky((2X - XT + AD)~1)T

Inverse Layer Hessian
(Cholesky Form)

Weight Matrix / Block

block i quantized recursively

computed initially

column-by-column

quantized weights .:

unquantized weights
that are updated

X 1S batch_sizex128k(len)

x7168(dim) in Deepseek-
V3 =» 7168%(bsx128k)

Cholesky
decomposition, given
a symmetric positive-
definite matrix A
A=L-L"



GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4 ~ cJrrentcolumn |
/ 1. quantize the column weights
(e.g. using int8 or int4)
q.; = quant(W, ;)

quantized
plocK




GPTQ: Block-wise Quantize and Update

weight matrix W, block size B=4
I

Jan]

A=)

)

OCNK

current column
1. quantize the column weights
(e.g. using nt8 or int4
rounding)
q.; = quant(WV. ;)
2. calculates the rounding error
Eji=W;—-0Q.,;)/G;

G = Cholesky((2X - XT + AD)~1)T

10



GPTQ: Block-wise Quantize and Update

current column

1. quantize the column’s weights
(e.g. using Int8 or int4)
q.; = quant(W, )
2. calculates the rounding error
Eji=W.,;—0Q.;)/G;
3. updates the remaining
weights in the column block

weight matrix W, block size B=4
I

W.i.ci+B)
=W.j.i+) — Eij-i " Gjjui+n)

quantized
plocK
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GPTQ: Lazy-update for rest weights

_ current column
B=4

L/ 1. quantize the column’s weights

(e.g. using int8 or int4)
q.; = quant(W, ;)
2. calculates the rounding error
E:,j—i — (W,] o Q,])/G],]
3. updates the rmaining weights
in the column block

W.i.ci+p)

weight matrix W, block size
I

quantized |cufrent bl
DIOCK

i) — Eoj—i * Gj i+

After compute the current block
4. update all remaining weights

W.(i+B):
=W.i+B): = E - Gi.(i+B) (i+B):

12



GPTQ Algorithm

Algorithm 1 Quantize W given inverse Hessian H~! = (2XX " 4+ AI)~! and blocksize B.

Q A Ddlﬂﬁ'x{icnl
E + udm.,,:n{E
H™" + Cholesky(H™')"
fori =0,B,2B,... do
forj=1i,...,i+ B—1do
Q.; < quant(W. ;)
E. i+ (W.,;—-Q.)/H"]
W.ji+8) & W jii+m) — Eij—i - H
end for

1
W:,f£+E}: — W:,{HE]: -E- Hz’:{i+E},ft'—|—E‘]:
end for

ivji(i+B)

// quantized output
// block quantization errors

// Hessian inverse information =G in previous
slides

// quantize column
// quantization error
// update weights in block

// update all remaining weights

13



Why GPTQ works?

* Quantize one weight in W can be solved using the Optimal
Brain Surgeon method (OBS)

o = We can update one column of weights

* [teratively updating the inverse Hessian can be updated
efficiently (rank-1 update using Optimal Brain Quantization,
OBQ method)

o = Using Cholesky to pre-compute

« Updating weights after calculating rounding errors can be
done in batch and lazy-fashion

14



Optimal Brain Surgeon

Taylor approximation to find optimal single weight in W to remove, and optimal
update of remaining weights to compensate.

Weight to prune w, which incurs the minimal increase in loss and the

corresponding update of the remaining weights 4, is,
2

w, = argmin w 5 -T2y
p P TH, P [H1],, P

In transformers, w,, could potentially be LayerNorm/FFN/MHA weights

H is a dxd Hessian matrix where d = d,,,, * d-o;, WhiCch IS expensive to store
and compute with.

H needs to be updated and inverted at O(d) pruning steps with a ©(d?)
complexity. Total runtime O(d*) is too inefficient.

15



Optimal Brain Quantization

OBQ picks the greedy optimal weight W, to quantize next, along with
the update § to all remaining unquantized weights F.

(quant(wq) — Wq)2 Wg — quant(wg)

w, = argmin — O = — = - (HF ).
/ | 1 Wq [HF 1]pp [HF 1]pp 1
fUl |_preC|Slon Upd ate Less compute: load stored trace elemeants

cas Loss
Changes

. Glabal Pruned

Ne Tt
-

Lezs memory: resolve not pruned walghts

quantizes weights iteratively
until all weights are quantized.

Hessian H = 2XXT
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1.

Optimal Brain Quantization

Row wise decomposition: OBQ applies OBS per row of the weight
matrix drow

> llwix - x|
=1

No Hessian interaction between different rows and so we can work with
the individual d.,; X d.,; H corresponding to each of the d,.,,, rows.

Efficient inverse

Reduces overall costs of this process to 0(d,,,, * d2,;) time and 0(dZ,;)
memory.
1

H1]yq

—1 —1 — _
Ho) = (H™' - H/H,!)
—P 17



Column Update using OBQ is efficient

Quantize all rows of weights in same order.
o =¥ column-wise update

F and Hg'are always the same for all rows

as Hp depends only on the layer inputs X5 ,
which are the same for all rows.

Perform update on Hz* only d,,; times, once
per column, rather than d,.,,, * d.o; times, once
per weight.

This reduces the overall runtime
from O(d oy - d3,;) tO
O (max(drow * d?ol' d?ol))-

Inverse Layer Hessian
(Cholesky Form)

Weight Matrix / Block

L

T P

L

computed initially

column-by-column

quantized weights .:

unquantized weights
that are updated

block i/ quantized recursively
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Insight of Arbitrary Update Order for OBQ

OBQ quantizes weights in a specific order defined by the
corresponding errors.

Improvement over quantizing the weights in arbitrary order is
generally small

o quantized weights with large individual error is balanced out by those weights
towards the end of the process

o few other unquantized weights can be adjusted for compensation

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers. Frantar et al. ICLR 2023. 19



Lazy Batch Updates

- Naive column update is not fast in practice Inverse Layer Hessian Weight Matrix / Block

. (Cholesky Form) e
o low compute-to-memory-access ratio
o cannot highly utilize GPUs compute. _L'—H
. Observation: - T
o Rounding decisions for col i only affected
by updates on this col
o Updates to later columns are irrelevant at computed initally block | uantized recursvely
. . . column-by-column
this point in the process.
. Efficient update quantzed weights [ ot ore Uodated

W.i+B): = W.i+B): — E * Gi.(i+B) (i+B):




Cholesky Pre-computation

Numerical inaccuracies, can become a
major problem at the scale of LLMs,

Hz1' can become indefinite

Observation:
o  Only information required from H;ql when quantizing

weight g from unquantized F, are the elements in row
g starting with the diagonal.

GPTQ leverages Cholesky kernels to
precompute all information from H~1 without any
significant increase in memory consumption.

Inverse Layer Hessian

(Cholesky Form) Weight Matrix / Block

block i quantized recursively

computed initially coumn-by-column

. . unquantized weights
quantized weights .: til\at are updategd
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Effectiveness of GPTQ?

How is GPT-Q’s perf on small models compared with accurate-but-
expensive methods?

How does GPT-Q’s quantization time scale with model size?

How is GPT-Q’s perf on large models compared with Round-to-
nearest methods?

How does GPT-Q speed up model inference in practical
applications?

Does GPT-Q even work for extreme 2-bit quantization?

22



Quantization Experiment Setup

Calibration data randomly sampled from C-4 dataset to
ensure GPTQ is not task-aware.

Standard uniform per-row asymmetric quantization on the
min-max grid

Quantize on each transformer block (6 layers), with input X
from last quantized block output.

23



How does GPT-Q speed up model inference in practical

applications?

OPT-175B mode (Measured with pipeline parallelism)

GPU FP16 3bit Speedup | GPU reduction
A6000 -48GB | 589ms | 130ms | 4.53x 8 — 2
A100 - 80GB 230ms | 71lms 3.24 X 5—1

Single-batch inference is memory-bound because of GE
dequantization consumes extra compute, the custom kernel reduces

memory access and thus reduces e2e time.

MVs. Although

24



How is GPT-Q’s perf on large models compared with
Round-to-nearest methods?

Perplexity with 4-bit quantizationon OPT
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How is GPT-Q’s perf on large models compared with
Round-to-nearest methods?

Perplexity with 3-bit quantization on OPT
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How does GPT-Q’s quantization time scale with model
size?

GPT-Q e ZeroQuant-LKD

1.3B model - 3h

Quantization time (h)

200

Model size (B)

* Measured on single A100

27



Does GPT-Q even work for extreme 2-bit quantization”

Perplexity with 2-bit quantization
10

9.5

8.5
: I I

OPT-175B BLOOM

w

o

|

mFP16 mg128 mg64 mg32 m3-bit
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How is GPT-Q’s perf on small models compared with
accurate-but-expensive methods?

Small model perf

BMN18-4bit RMN18-3bit RMN50-4bit RM50-3bit
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B AdaRound l.ﬂ.{:i ant EBRECQ ®EOBQ ®EGPTQ #®Unguantized

Fastest pr ior method



GPTQ for LLaMA

 hitps://qgithub.com/gwopgwop200/GPTQ-for-LLaMa/

e GPTQn

o https://github.com/gwopgwop200/GPTQ-for-
LLaMa/blob/triton/gptg.py
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GPTQ: Initialization

def __init_ (self, layer):
self.layer = layer
self.dev = self.layer.weight.device
W = layer.weight.data.clone() e Reshape weights from the
if isinstance(self.layer, nn.Conv2d): input layer
W = W.flatten(1)
if isinstance(self.layer, transformers.Conv1D):
W=W.t()
self.rows = W.shape[0]

e Initialize Hessian matrix

self.columns = W.shape[1]
selT.H = torch.zeros((self.columns, self.columns), device=self.dev)

self.nsamples = @

32



GPTQ: Hessian Matrix Update

def add_batch(self, inp, out):
if len(inp.shape) == 2:
inp = inp.unsqueeze(0)
tmp = inp.shape([0]

if isinstance(self.layer, nn.Linear) or isinstance(self.layer, transformers.ConvlD):

if len(inp.shape) == 3:
inp = inp.reshape((-1, inp.shape[-1]))

inp = inp.t()

if isinstance(self.layer, nn.Conv2d):

unfold = nn.Unfold(
self.layer.kernel_size,
dilation=self. layer.dilation,
padding=self. layer.padding,
stride=self.layer.stride

)

inp = unfold(inp)
inp = inp.permute([1, 0, 2])
inp = inp.flatten(1)

self.H *= self.nsamples / (self.nsamples + tmp)

self.nsamples += tmp

# inp = inp.float()

inp = math.sqrt(2 / self.nsamples) * inp.float()

# self.H += 2 / self.nsamples * inp.matmul(inp.t())
self.H += inp.matmul(inp.t())

Update Hessian matrix with
information from a new
batch of the input and
output pairs
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GPTQ: Lazy Batch-Update

for i1 in range(@, self.columns, blocksize):
i2 = min(il + blocksize, self.columns)
count = i2 - il

Wl = W[:, i1:i2].clone() e Processes weight matrix W in blocks.

Q1 = torch.zeros_like(W1)

Errl = torch.zeros_like(Wl) . . .

Losses1 = torch.zeros Like(Wl) e Updates quantlza.tlon paramgters con_d|t|onally

Hinvl = Hinv[il:i2, i1:i2] based on group size and static grouping
settings.

for i in range(count):
w=Wl[:, i]
d = Hinv1[i, il

if groupsize != -1:
if not static_groups:
if (i1 + i) % groupsize == @:
self.quantizer.find_params(W([:, (il + i):(il + i + groupsize)], weight=True)
else:
idx = 11 + 1
if actorder:
idx = perm[idx]
self.quantizer = groups[idx // groupsize]

34



GPTQ: Lazy Batch-Update

q = quantize(
w.unsqueeze(l), self.quantizer.scale, self.quantizer.zero, self.quantizer.maxq

). flatten()

01l:,: 1] ='q

Lossesl[:, 1] = (w - q) *x 2 / d %k 2

e Applies quantization function quantize to
weights and computes the loss due to

errl = (w-gq) / d quantization.

Wi[:, i:] -= errl.unsqueeze(l).matmul(Hinv1l([i, i:].unsqueeze(0))

Ervil:; 11 = 1 ' ini |
rrif:, i] = err e Adjusts remaining block weights based on

ol:, i1:i2] = Q1 quantization error to minimize the overall error.

Losses[:, 11:i2] = Lossesl / 2

Wl:, i2:] -= Errl.matmul(Hinv[il:1i2, i2:])
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damp
diag
H[di
H =
H =
H =
Hinv

GPTQ: Cholesky Reformulation

= percdamp * torch.mean(torch.diag(H))

= torch.arange(self.columns, device=self.dev)
ag, diag] += damp
torch. linalg.cholesky(H)
torch.cholesky_inverse(H)
torch. linalg.cholesky(H, upper=True)

= H

Applies damping to the Hessian
matrix diagonals

Performs Cholesky decomposition
and inversion

Transforms the Hessian into its
inverse.
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import random

from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from datasets import load_dataset
import torch

from transformers import AutoTokenizer

# Define base model and output directory
model_id = "gpt2” #modify to your model
out_dir = model_id + "-GPTQ”

# Load quantize config, model and tokenizer

guantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)

tokenizer = AutoTokenizer.from_pretrained(model_id)

# Load data and tokenize examples

n_samples = 1024

data = load_dataset("allenai/c4", data_files="en/c4-train.00001-0f-01024.json.gz", split=f"train[:{n_samples*5}]")
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors="pt')

# Format tokenized examples

examples_ids =[]

for _inrange(n_samples):

i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)
j =i+ tokenizer.model_max_length

input_ids = tokenized_data.input_ids[:, i:j]

attention_mask = torch.ones_like(input_ids)

examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})

# Quantize with GPTQ
model.quantize(examples_ids, batch_size=1, use_triton=True)

# Save model and tokenizer
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir)
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Summary and Limitations
. GPTQ

o approximate second-order of weights
o layer-wise quantization + compensation for errors + precompute

o accurately compress some of the largest publicly-available
models down to 3 and 4 bits, and bring end-to-end speedups

* Limitations
o Theoretical computation is the same

o Focus on weight quantization, and does not consider activation
quantization
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