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• Pipeline Parallelism

o split by layers (horizonal split) 

o eliminate the bubbles (idle)

o interleaving forward/backward

• Tensor Parallelism

o split the matrix computation
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Summary



• Low precision numbers in computer

• Basic Quantization Methods
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Today’s Topic



Llama-70B

 39.3M H100-80GB GPU hours to train

 requires 140GB GPU memory for inference

Deepseek V3 (671GB)

 2.8M H800 GPU hours to train

 requires > 400GB GPU memory for inference
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LLM Training and Inference are Costly!



• Use low-bit precision to store parameters and layer outputs

• Quantization can

o reduce memory ➔ larger batch size

o speed up calculation, more operations in one cycle

• Cons: potentially reduce accuracy
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Model Quantization

A White Paper on Neural Network Quantization (Nagel et al., 2021)
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Precision Formats
± 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2 𝑎−2 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1

Image from https://deeprec.readthedocs.io/en/latest/BFloat16.html

INT8 range: -128~127, Precision: integer
07

half 

precision

https://deeprec.readthedocs.io/en/latest/BFloat16.html
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BF16/FP16 Calculations are faster!

HFMA2: Half-precision Fused Multiply-Add for 2 elements in one 

cycle (2x speedup)
Global Memory

Cache Line (128 bytes for A100)

warp (32 threads) load 2 bf16 per thread

Register A Register B

[a1, a2] [b1, b2]

Register C

[c1, c2]

a1*b1 + c1 a2*b2 + c2

Then, compute in parallel, and write back to register C

Pack two bf16 into 

one 32-bits register

A100/A6000 or later GPUs support BF16



Performs half2 vector addition in round-to-nearest-even 

mode.

__device__ __half2 __hadd2(const __half2 a, const __half2 b)

Performs half2 vector fused multiply-add in round-to-nearest-

even mode.

__device__ __half2 __hfma2(const __half2 a, const __half2 b, const 
__half2 c)
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CUDA APIs for Half Precision



• Using lower precision

o converting parameters from FP32 to INT8 or INT4

o perform all computation in lower prevision.

• Reduce model accuracy:

o Loss of Precision ➔ accumulate quantization noise

o Range mismatch ➔ values are clipped and lead to information 

loss

oQuantization error ➔ rounding errors 

9

Direct Quantization Approach



• Absmax quant • Zero-point quant
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Quantize a number



Code implementation for quant(.)
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import torch 
def absmax_quantize(X): 

# Calculate scale 
scale = 127 / torch.max(torch.abs(X)) 
# Quantize 
X_quant = (scale * X).round() 
# Dequantize 
X_dequant = X_quant / scale 
return X_quant.to(torch.int8), X_dequant

def zeropoint_quantize(X): 
# Calculate value range (denominator) 
x_range = torch.max(X) - torch.min(X) 
x_range = 1 if x_range == 0 else x_range 
# Calculate scale 
scale = 255 / x_range 
# Shift by zero-point 
zeropoint = (-scale * torch.min(X) - 128).round() 
# Scale and round the inputs 
X_quant = torch.clip((X * scale + zeropoint).round(), -128, 
127) 
# Dequantize 
X_dequant = (X_quant - zeropoint) / scale 
return X_quant.to(torch.int8), X_dequant



https://colab.research.google.com/drive/1DPr4mUQ92Cc-

xf4GgAaB6dFcFnWIvqYi?usp=sharing 
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Direct Quantization Colab

https://colab.research.google.com/drive/1DPr4mUQ92Cc-xf4GgAaB6dFcFnWIvqYi?usp=sharing
https://colab.research.google.com/drive/1DPr4mUQ92Cc-xf4GgAaB6dFcFnWIvqYi?usp=sharing
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Today’s Topic

• Low precision numbers in computer

• Basic Quantization Methods



Model Quantization Approaches
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Quantization 

during training

post training

expensive re-training / finetuning



Model Quantization Approaches
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Quantization 

 during training

post training

preserve accuracy

scale to large 

parameters

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)



Model Quantization Approaches
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Quantization 

 during training

post training

preserve 

accuracy
(by quantizing each 

individual / consecutive 

layers)

scale to large 

parameters

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)

hard to scale to large 

parameters (billions)



• Find the quantized matrix 𝑊 that minimizes the linear layer’s 

output. 

• Performs quantization layer-by-layer

argmin
𝑊

𝑊𝑋 − 𝑊𝑋
2

2

W: linear projection weights (e.g. in FFN and attention)

X: layer input

• Limitation: could still lead to accumulation of quantization 

error 
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Basic Approach: Layer-Wise Quantization



(∆𝑤, ∆𝑥, 𝑉) = argmin
∆𝑤 ∆𝑥,𝑉

𝑊𝑋 − 𝑄∆𝑤(𝑊 + 𝑉) ∙ 𝑄∆𝑥(𝑋)
2
)

• minimize the error between the quantized / full-precision 

layer outputs for each layer

• adding continuous V to W and quantize
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AdaQuant

quantized results

Hubara et al. Improving Post Training Neural Quantization: Layer-wise Calibration and Integer Programming. 2020.



MobileNet-v2 Float Model Direct Quantized 

Model

Quantized Model 

with ADAQUANT

Model Size 8.4 MB 2.3 MB 2.4 MB

P rec@1 65.4 % 1.7 % 52.3 %

P rec@5 85.7 % 5.6 % 75.7 %
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Is Quantization Accurate?
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Why is Quantizing LLMs Difficult?

Quantization 

 during training

post training

preserve accuracy

scale to large 

parameters
(by rounding weights to the 

nearest quantization level)

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)

accuracy loss when lower-bit 

precision (ex. 3, 4 bits per 

parameter)



• Layer-by-layer knowledge distillation 

o Use the original model as Teacher
o the quantized model is student
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ZeroQuant

ℒ𝐿𝐾𝐷,𝑘 = 𝐿𝑘 ∙ 𝐿𝑘−1 ∙ 𝐿𝑘−2 ∙ ⋯ ∙ 𝐿1 𝑋 − 𝐿𝑘 ∙ 𝐿𝑘−1 ∙ 𝐿𝑘−2 ∙ ⋯ ∙ 𝐿1 𝑋
2

Layer Lk-1

Teacher Layer Lk Student Layer 𝐿𝑘

Distillation Loss

Update quantization 

scheme for Lk

Yao et al. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. Neurips 2022.



• Quantization-Optimized Transformer Kernels (fusion)

• The scalability is verified up to 20B models (GPT-NeoX20B)

• At 1.3B scale, computation time is ~3 hours
o but slower than GPTQ (x100 larger in ~4 hours)

• integrated in Deepspeed
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ZeroQuant

Yao et al. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. Neurips 2022.



• Using 8-bit quantization for 

matrix multiplications

• But, extreme outliers in 

features (activation values)

o need for wider numerical ranges 

oQuantize all parameters without 

distinguishing them separately 

can result in accuracy 

degradation
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LLM.int8()

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al. Neurips 2022.



• Keep outliers in higher precision while quantizing the rest

• Outliers: large magnitude (>= 6.0) , affects >= 25% layers, and 

affects >= 6% sequence dimensions

24

LLM.int8()

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al. Neurips 2022.



• low-bit number representation in computer

o BF16: 16-bit half precision floating point numbers, better for ML

o int8

• Direct quantization

o absmax: linearly scale according to max abs value

o zero-point: finding zero-point and scale

• Layer-wise quantization approaches

o AdaQuant

o KD: ZeroQuant

o LLM.int8()
25

Summary



• Scaling Quantization for large models: GPTQ
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Next
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