
11868 LLM Systems

LLM Quantization

-- Basic methods

Lei Li

Ack: Kath Choi, Aashiq Muhamed, Zhen Wu, Hongyi Jin, Wayne Wang

• Pipeline Parallelism

o split by layers (horizonal split)

o eliminate the bubbles (idle)

o interleaving forward/backward

• Tensor Parallelism

o split the matrix computation

2

Summary

• Low precision numbers in computer

• Basic Quantization Methods

3

Today’s Topic

Llama-70B

 39.3M H100-80GB GPU hours to train

 requires 140GB GPU memory for inference

Deepseek V3 (671GB)

 2.8M H800 GPU hours to train

 requires > 400GB GPU memory for inference

4

LLM Training and Inference are Costly!

• Use low-bit precision to store parameters and layer outputs

• Quantization can

o reduce memory ➔ larger batch size

o speed up calculation, more operations in one cycle

• Cons: potentially reduce accuracy

5

Model Quantization

A White Paper on Neural Network Quantization (Nagel et al., 2021)

6

Precision Formats
± 1. 𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2 𝑎−2 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1

Image from https://deeprec.readthedocs.io/en/latest/BFloat16.html

INT8 range: -128~127, Precision: integer
07

half

precision

https://deeprec.readthedocs.io/en/latest/BFloat16.html

7

BF16/FP16 Calculations are faster!

HFMA2: Half-precision Fused Multiply-Add for 2 elements in one

cycle (2x speedup)
Global Memory

Cache Line (128 bytes for A100)

warp (32 threads) load 2 bf16 per thread

Register A Register B

[a1, a2] [b1, b2]

Register C

[c1, c2]

a1*b1 + c1 a2*b2 + c2

Then, compute in parallel, and write back to register C

Pack two bf16 into

one 32-bits register

A100/A6000 or later GPUs support BF16

Performs half2 vector addition in round-to-nearest-even

mode.

__device__ __half2 __hadd2(const __half2 a, const __half2 b)

Performs half2 vector fused multiply-add in round-to-nearest-

even mode.

__device__ __half2 __hfma2(const __half2 a, const __half2 b, const
__half2 c)

8

CUDA APIs for Half Precision

• Using lower precision

o converting parameters from FP32 to INT8 or INT4

o perform all computation in lower prevision.

• Reduce model accuracy:

o Loss of Precision ➔ accumulate quantization noise

o Range mismatch ➔ values are clipped and lead to information

loss

oQuantization error ➔ rounding errors

9

Direct Quantization Approach

• Absmax quant • Zero-point quant

10

Quantize a number

Code implementation for quant(.)

11

import torch
def absmax_quantize(X):

Calculate scale
scale = 127 / torch.max(torch.abs(X))
Quantize
X_quant = (scale * X).round()
Dequantize
X_dequant = X_quant / scale
return X_quant.to(torch.int8), X_dequant

def zeropoint_quantize(X):
Calculate value range (denominator)
x_range = torch.max(X) - torch.min(X)
x_range = 1 if x_range == 0 else x_range
Calculate scale
scale = 255 / x_range
Shift by zero-point
zeropoint = (-scale * torch.min(X) - 128).round()
Scale and round the inputs
X_quant = torch.clip((X * scale + zeropoint).round(), -128,
127)
Dequantize
X_dequant = (X_quant - zeropoint) / scale
return X_quant.to(torch.int8), X_dequant

https://colab.research.google.com/drive/1DPr4mUQ92Cc-

xf4GgAaB6dFcFnWIvqYi?usp=sharing

12

Direct Quantization Colab

https://colab.research.google.com/drive/1DPr4mUQ92Cc-xf4GgAaB6dFcFnWIvqYi?usp=sharing
https://colab.research.google.com/drive/1DPr4mUQ92Cc-xf4GgAaB6dFcFnWIvqYi?usp=sharing

13

Today’s Topic

• Low precision numbers in computer

• Basic Quantization Methods

Model Quantization Approaches

14

Quantization

during training

post training

expensive re-training / finetuning

Model Quantization Approaches

15

Quantization

 during training

post training

preserve accuracy

scale to large

parameters

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)

Model Quantization Approaches

16

Quantization

 during training

post training

preserve

accuracy
(by quantizing each

individual / consecutive

layers)

scale to large

parameters

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)

hard to scale to large

parameters (billions)

• Find the quantized matrix 𝑊 that minimizes the linear layer’s

output.

• Performs quantization layer-by-layer

argmin
𝑊

𝑊𝑋 − 𝑊𝑋
2

2

W: linear projection weights (e.g. in FFN and attention)

X: layer input

• Limitation: could still lead to accumulation of quantization

error
17

Basic Approach: Layer-Wise Quantization

(∆𝑤, ∆𝑥, 𝑉) = argmin
∆𝑤 ∆𝑥,𝑉

𝑊𝑋 − 𝑄∆𝑤(𝑊 + 𝑉) ∙ 𝑄∆𝑥(𝑋)
2
)

• minimize the error between the quantized / full-precision

layer outputs for each layer

• adding continuous V to W and quantize

18

AdaQuant

quantized results

Hubara et al. Improving Post Training Neural Quantization: Layer-wise Calibration and Integer Programming. 2020.

MobileNet-v2 Float Model Direct Quantized

Model

Quantized Model

with ADAQUANT

Model Size 8.4 MB 2.3 MB 2.4 MB

P rec@1 65.4 % 1.7 % 52.3 %

P rec@5 85.7 % 5.6 % 75.7 %

19

Is Quantization Accurate?

20

Why is Quantizing LLMs Difficult?

Quantization

 during training

post training

preserve accuracy

scale to large

parameters
(by rounding weights to the

nearest quantization level)

BRECQ (Li et al., 2021)

AdaQuant (Hubara et al., 2021)

OBQ (Frantar et al., 2022)

ZeroQuant (Yao et al., 2022)

LLM.int8() (Dettmers et al., 2022)

accuracy loss when lower-bit

precision (ex. 3, 4 bits per

parameter)

• Layer-by-layer knowledge distillation

o Use the original model as Teacher
o the quantized model is student

21

ZeroQuant

ℒ𝐿𝐾𝐷,𝑘 = 𝐿𝑘 ∙ 𝐿𝑘−1 ∙ 𝐿𝑘−2 ∙ ⋯ ∙ 𝐿1 𝑋 − 𝐿𝑘 ∙ 𝐿𝑘−1 ∙ 𝐿𝑘−2 ∙ ⋯ ∙ 𝐿1 𝑋
2

Layer Lk-1

Teacher Layer Lk Student Layer 𝐿𝑘

Distillation Loss

Update quantization

scheme for Lk

Yao et al. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. Neurips 2022.

• Quantization-Optimized Transformer Kernels (fusion)

• The scalability is verified up to 20B models (GPT-NeoX20B)

• At 1.3B scale, computation time is ~3 hours
o but slower than GPTQ (x100 larger in ~4 hours)

• integrated in Deepspeed

22

ZeroQuant

Yao et al. ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers. Neurips 2022.

• Using 8-bit quantization for

matrix multiplications

• But, extreme outliers in

features (activation values)

o need for wider numerical ranges

oQuantize all parameters without

distinguishing them separately

can result in accuracy

degradation
23

LLM.int8()

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al. Neurips 2022.

• Keep outliers in higher precision while quantizing the rest

• Outliers: large magnitude (>= 6.0) , affects >= 25% layers, and

affects >= 6% sequence dimensions

24

LLM.int8()

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. Dettmers et al. Neurips 2022.

• low-bit number representation in computer

o BF16: 16-bit half precision floating point numbers, better for ML

o int8

• Direct quantization

o absmax: linearly scale according to max abs value

o zero-point: finding zero-point and scale

• Layer-wise quantization approaches

o AdaQuant

o KD: ZeroQuant

o LLM.int8()
25

Summary

• Scaling Quantization for large models: GPTQ

26

Next

	Slide 1: 11868 LLM Systems LLM Quantization -- Basic methods
	Slide 2: Summary
	Slide 3: Today’s Topic
	Slide 4: LLM Training and Inference are Costly!
	Slide 5: Model Quantization
	Slide 6: Precision Formats
	Slide 7: BF16/FP16 Calculations are faster!
	Slide 8: CUDA APIs for Half Precision
	Slide 9: Direct Quantization Approach
	Slide 10: Quantize a number
	Slide 11: Code implementation for quant(.)
	Slide 12: Direct Quantization Colab
	Slide 13: Today’s Topic
	Slide 14: Model Quantization Approaches
	Slide 15: Model Quantization Approaches
	Slide 16: Model Quantization Approaches
	Slide 17: Basic Approach: Layer-Wise Quantization
	Slide 18: AdaQuant
	Slide 19: Is Quantization Accurate?
	Slide 20: Why is Quantizing LLMs Difficult?
	Slide 21: ZeroQuant
	Slide 22: ZeroQuant
	Slide 23: LLM.int8()
	Slide 24: LLM.int8()
	Slide 25: Summary
	Slide 26: Next

