

11868/11968 LLM Systems LLM Quantization -- Basic methods

Lei Li

Carnegie Mellon University

Language Technologies Institute

Ack: Kath Choi, Aashiq Muhamed, Zhen Wu, Hongyi Jin, Wayne Wang

Recap of Model Parallel Training

- Pipeline Parallelism
 - split by layers (horizonal split)
 - o eliminate the bubbles (idle)
 - o interleaving forward/backward
- Tensor Parallelism
 - Split the matrix computation

Today's Topic

- Low precision numbers in computer
- Basic Quantization Methods

LLM Training and Inference are Costly!

Llama-70B

39.3M H100-80GB GPU hours to train requires 140GB GPU memory for inference

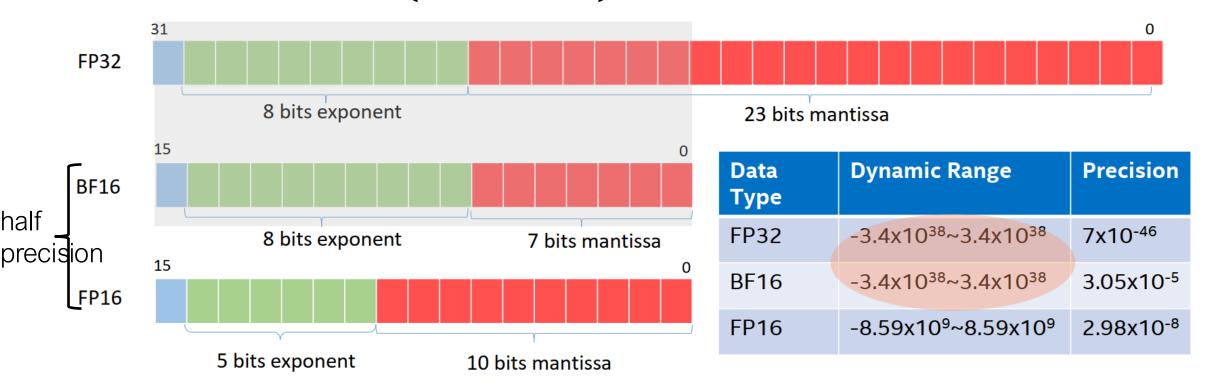
2.8M H800 GPU hours to train requires > 400GB GPU memory for inference

Model Quantization

- Use low-bit precision to store parameters and layer outputs
- Quantization can
 - reduce memory → larger batch size
 - o speed up calculation, more operations in one cycle
- Cons: potentially reduce accuracy

Precision Formats

$$\pm 1.(mantissa) * 2^{\{a-2^{\{exponent-1\}}\}}$$

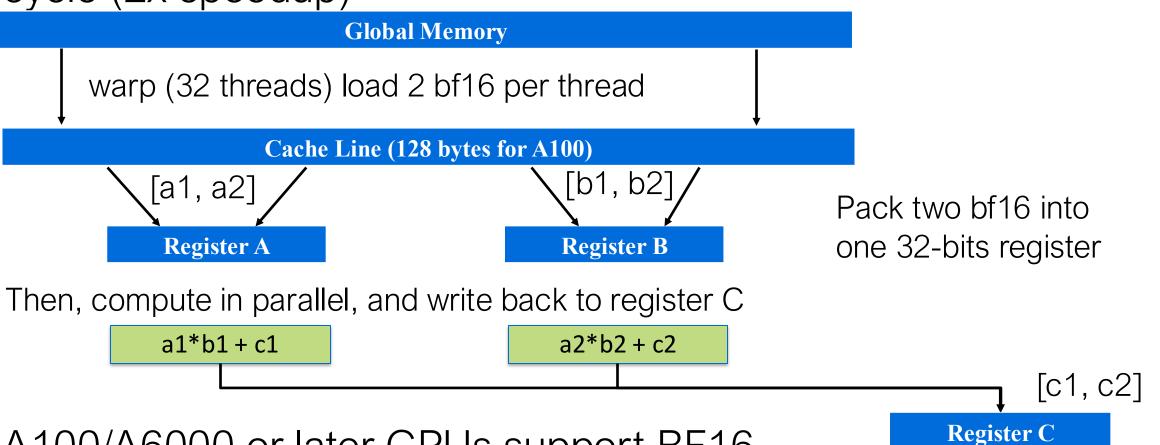


BF16 favors Dynamic Range than Precision.

INT8 range: -128~127, Precision: integer

BF16/FP16 Calculations are faster!

HFMA2: Half-precision Fused Multiply-Add for 2 elements in one cycle (2x speedup)



A100/A6000 or later GPUs support BF16

7

CUDA APIs for Half Precision

Performs half2 vector addition in round-to-nearest-even mode.

```
__device__ _half2 __hadd2(const __half2 a, const __half2 b)
```

Performs half2 vector fused multiply-add in round-to-nearesteven mode.

```
__device__ _half2 _hfma2(const _half2 a, const _half2 b, const _half2 c)
```

Direct Quantization Approach

- Using lower precision
 - o converting parameters from FP32 to INT8 or INT4
 - o perform all computation in lower prevision.
- Reduce model accuracy:
 - Loss of Precision → accumulate quantization noise
 - Range mismatch → values are clipped and lead to information loss
 - Quantization error → rounding errors

Quantize a number

Absmax quant

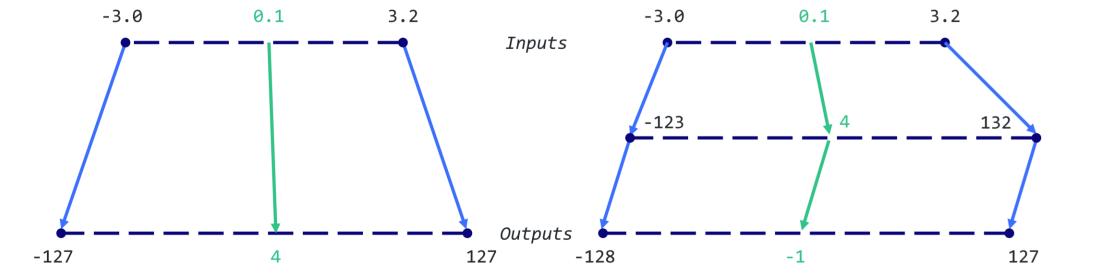
$$\mathbf{X}_{\mathrm{quant}} = \mathrm{round} \left(\frac{127}{\mathrm{max} |\mathbf{X}|} \cdot \mathbf{X} \right)$$
 $\mathbf{X}_{\mathrm{dequant}} = \frac{\mathrm{max} |\mathbf{X}|}{127} \cdot \mathbf{X}_{\mathrm{quant}}$

• Zero-point quant
$$scale = \frac{255}{\max(\mathbf{X}) - \min(\mathbf{X})}$$

$$zeropoint = -round(scale \cdot \min(\mathbf{X})) - 128$$

$$\mathbf{X}_{quant} = round\left(scale \cdot \mathbf{X} + zeropoint\right)$$

$$\mathbf{X}_{dequant} = \frac{\mathbf{X}_{quant} - zeropoint}{scale}$$



Code implementation for quant(.)

```
import torch
def absmax_quantize(X):
    # Calculate scale
    scale = 127 / torch.max(torch.abs(X))
    # Quantize
    X_quant = (scale * X).round()
    # Dequantize
    X_dequant = X_quant / scale
    return X_quant.to(torch.int8), X_dequant
```

```
def zeropoint_quantize(X):
     # Calculate value range (denominator)
     x_range = torch.max(X) - torch.min(X)
     x_range = 1 if x_range == 0 else x_range
     # Calculate scale
     scale = 255 / x_range
     # Shift by zero-point
     zeropoint = (-scale * torch.min(X) - 128).round()
     # Scale and round the inputs
     X_quant = torch.clip((X * scale + zeropoint).round(), -128,
     127)
     # Dequantize
     X_dequant = (X_quant - zeropoint) / scale
     return X_quant.to(torch.int8), X_dequant
```

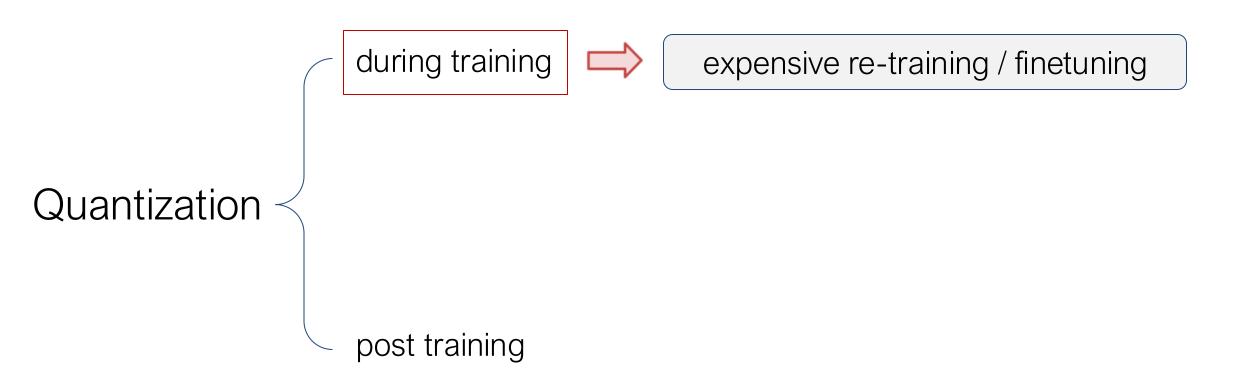
Direct Quantization Colab

https://colab.research.google.com/drive/1DPr4mUQ92Cc-xf4GgAaB6dFcFnWlvqYi?usp=sharing

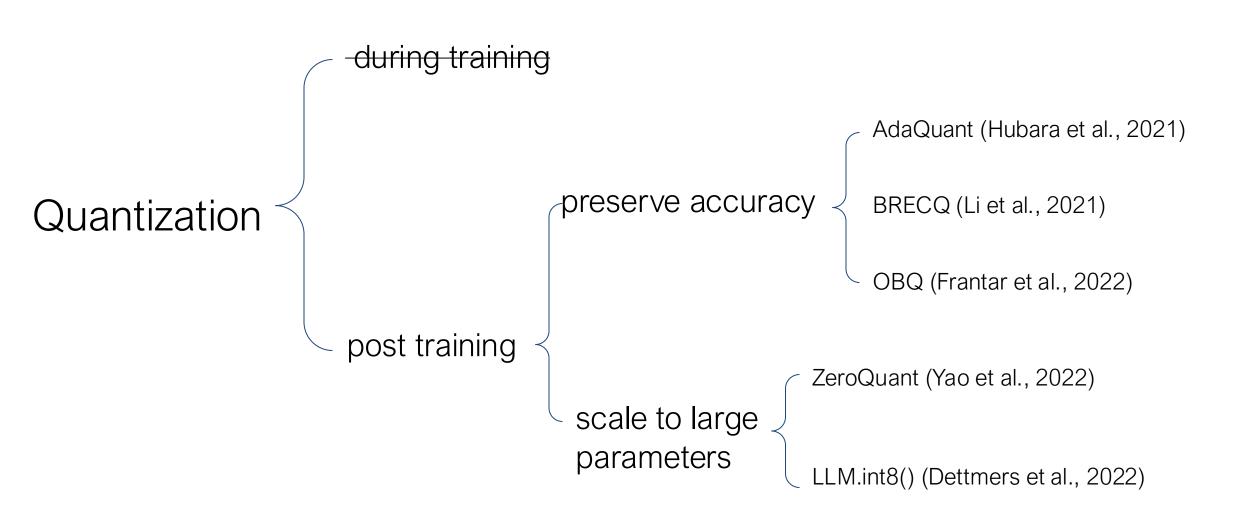
Today's Topic

Low precision numbers in computer

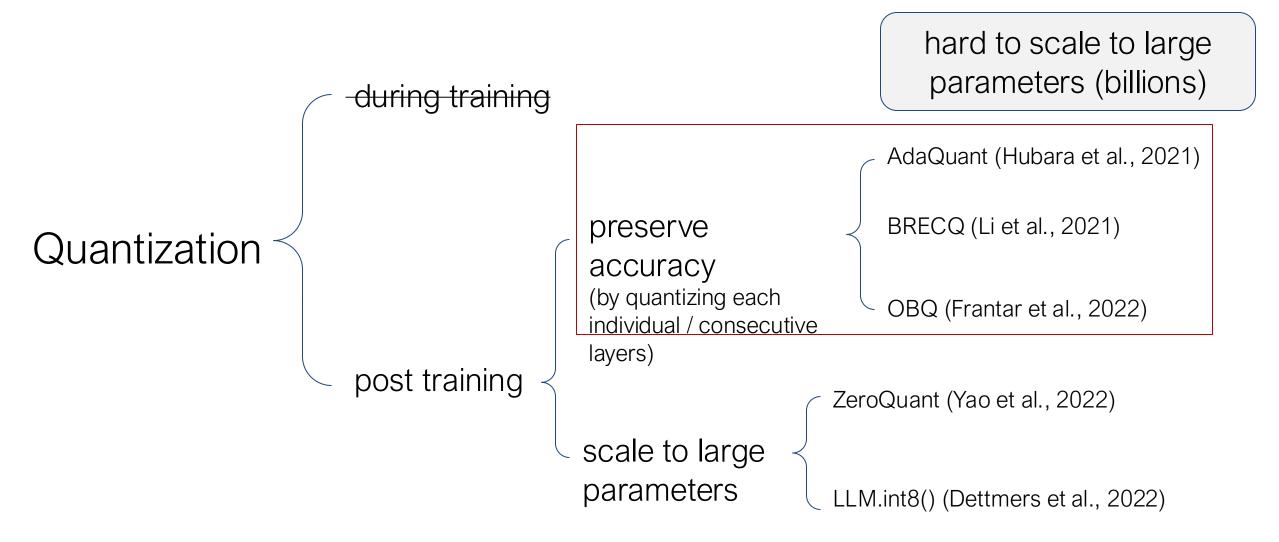
Model Quantization Approaches



Model Quantization Approaches



Model Quantization Approaches



Basic Approach: Layer-Wise Quantization

- Find the quantized matrix \hat{W} that minimizes the linear layer's output.
- Performs quantization layer-by-layer linear projection $\underset{\widehat{W}}{\operatorname{argmin}} \|WX \widehat{W}X\|_{2}^{2}$

W: linear projection weights (e.g. in FFN and attention)

X: layer input

Limitation: could still lead to accumulation of quantization error

AdaQuant

- minimize the error between the quantized / full-precision layer outputs for each layer
- adding continuous V to W and quantize

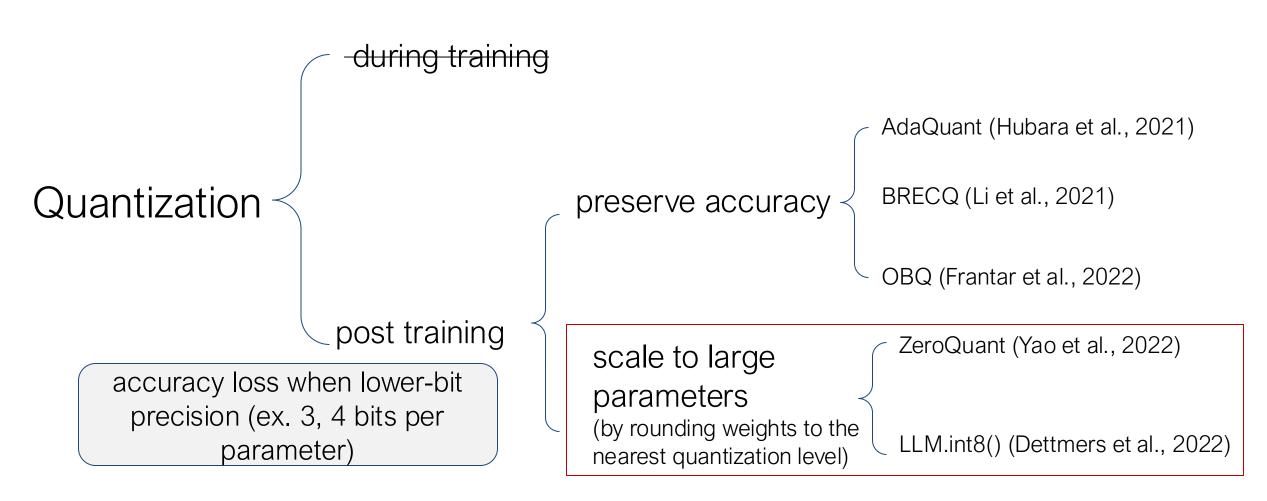
$$(\widehat{\Delta_{w}}, \widehat{\Delta_{x}}, \widehat{V}) = \underset{\Delta_{w} \Delta_{x}, V}{\operatorname{argmin}} \|WX - Q_{\Delta_{w}}(W + V) \cdot Q_{\Delta_{x}}(X)\|^{2}$$
quantized results

the quantization step size Δ_w and Δ_x can be set or learned.

Is Quantization Accurate?

MobileNet-v2	Float Model	Direct Quantized	Quantized Model
		Model	with ADAQUANT
Model Size	8.4 MB	2.3 MB	2.4 MB
P rec@1	65.4 %	1.7 %	52.3 %
P rec@5	85.7 %	5.6 %	75.7 %

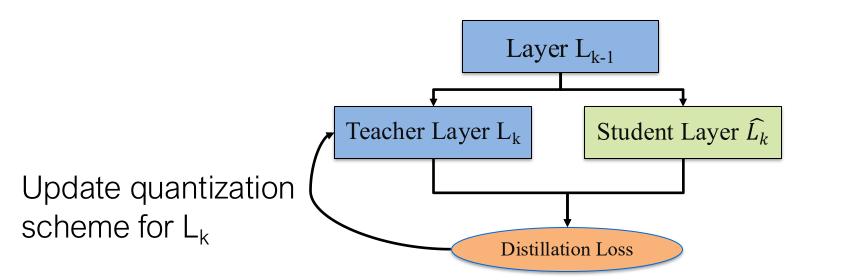
Why is Quantizing LLMs Difficult?



ZeroQuant

- Layer-by-layer knowledge distillation
 - Use the original model as Teacher
 - the quantized model is student

$$\mathcal{L}_{LKD,k} = |L_k \cdot L_{k-1} \cdot L_{k-2} \cdot \dots \cdot L_1(X) - \hat{L}_k \cdot L_{k-1} \cdot L_{k-2} \cdot \dots \cdot L_1(X)|^2$$



ZeroQuant

Quantization-Optimized Transformer Kernels (fusion)

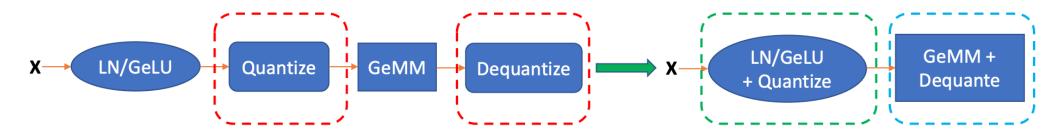
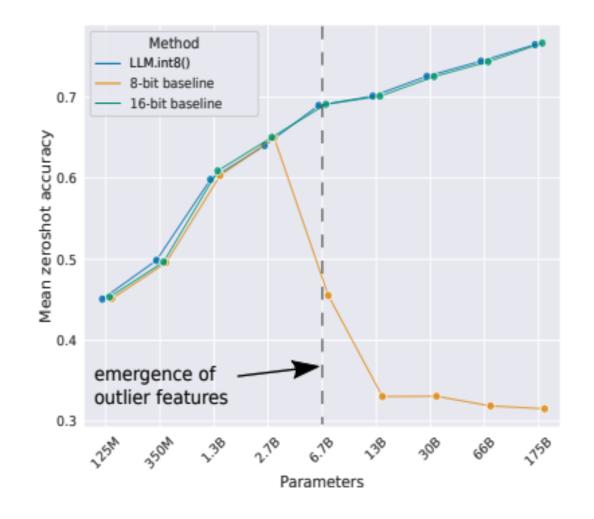


Figure 2: The illustration of normal (left) and our fused (right) INT8 GeMM.

- The scalability is verified up to 20B models (GPT-NeoX_{20B})
- At 1.3B scale, computation time is ~3 hours
 - but slower than GPTQ (x100 larger in ~4 hours)
- integrated in Deepspeed

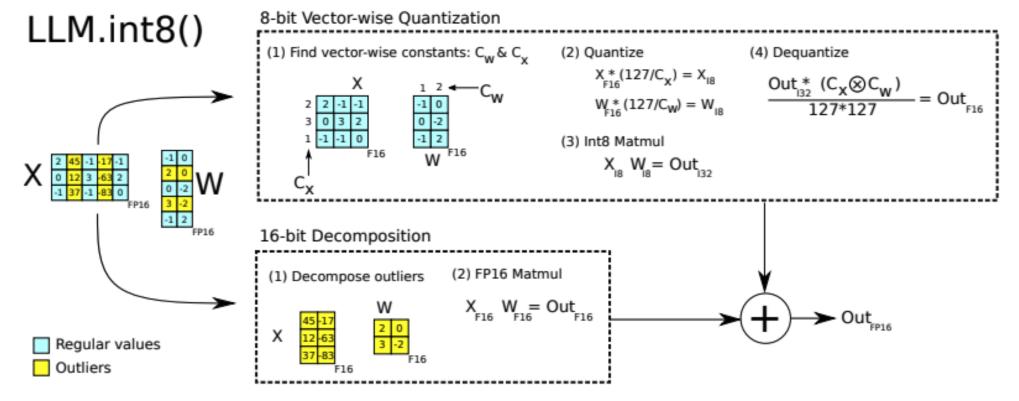
LLM.int8()

- Using 8-bit quantization for matrix multiplications
- But, extreme outliers in features (activation values)
 - o need for wider numerical ranges
 - Quantize all parameters without distinguishing them separately can result in accuracy degradation



LLM.int8()

- Keep outliers in higher precision (FP16) while quantizing the rest (8bit)
- Outliers: large magnitude (>= 6.0), affects >= 25% layers, and affects
 >= 6% sequence dimensions



Summary

- low-bit number representation in computer
 - o BF16: 16-bit half precision floating point numbers, better for ML
 - o int8
- Direct quantization
 - o absmax: linearly scale according to max abs value
 - o zero-point: finding zero-point and scale
- Layer-wise quantization approaches
 - AdaQuant
 - o KD: ZeroQuant
 - o LLM.int8()

Next

Scaling Quantization for large models: GPTQ