LLM Sys 11868 LLM Systems **Distributed Training – Model Parallelism** Lei Li

Carnegie Mellon University Language Technologies Institute

Today's Topic

- Model Parallel
- Pipeline Parallelism
- Tensor Parallelism

Model Parallelism

Motivation: The size of models increases exponentially fast and large. It is no longer possible to fit these large models into the memory of a single GPU.

Model Parallel

Model Parallel: memory usage and computation of a model is distributed across multiple workers.

Distributed layer-wise computation

Distributed tensor computation

is equivalent to

Naïve Model Parallel: The model is distributed across multiple GPUs over layers.

Any disadvantage?

all but one GPU is idle at any given moment!

Naïve Model Parallel: The model is distributed across multiple GPUs over layers within one single node.

layer name	output size	34-layer	50-layer	101-layer	
conv1	112×112		7×7, 64, stride 2	2	ר ר
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	- device0
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	J
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	- device1
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	J
	1×1	av	erage pool, 1000-d fc,	softmax	
FLOPs		3.6×10^9	3.8×10^{9}	7.6×10^9	

```
class ModelParallelResNet50(ResNet):
    def __init__(self, *args, **kwargs):
        super(ModelParallelResNet50, self).__init__(
            Bottleneck, [3, 4, 6, 3], num_classes=num_classes, *args, **kwargs)
        self.seq1 = nn.Sequential(
            self.conv1,
            self.bn1,
            self.relu,
            self.maxpool,
            self.layer1,
            self.layer2
        ).to('cuda:0')
        self.seq2 = nn.Sequential(
            self.layer3,
            self.layer4,
            self.avgpool,
        ).to('cuda:1')
        self.fc.to('cuda:1')
    def forward(self, x):
                                                                nccl send/recv
        x = self.seq2(self.seq1(x).to('cuda:1'))
        return self.fc(x.view(x.size(0), -1))
```

• GPipe: Divides input data mini-batches into smaller microbatches.

GPipe: Divides input data mini-batches into smaller micro-batches.

			F _{3,0}	F 3,1	F3,2	F 3,3	B 3,3	B 3,2	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B 2,3	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F 1,3	ſ				B 1,3	B _{1,2}	B _{1,1}	B _{1,0}		Update
F _{0,0}	F 0,1	F 0,2	F 0,3		,	В	ubble			Во,з	B _{0,2}	B _{0,1}	B _{0,0}	Update

- (i) the number of model partitions K
- (ii) the number of micro-batches M
- (iii) the sequence and definitions of L layers that define the model

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

GPipe: Divides input mini-batches into smaller micro-batches. During backward, recomputes forward

			F 3,0	F 3,1	F _{3,2}	F 3,3	B 3,3	B 3,2	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F 1,3	ſ				B 1,3	B 1,2	B _{1,1}	B _{1,0}		Update
F 0,0	F 0,1	F 0,2	F0,3			B	ubble	;		B 0,3	B _{0,2}	B _{0,1}	B 0,0	Update

Bubble overhead: $O(\frac{K-1}{M+K-1})$ could be negligible when $M > 4 \times K$ Communication overhead: transfer activation tensors at the partition boundaries Peak activation memory: $O(N \times L) \rightarrow O(N + \frac{L}{K} \times \frac{N}{M})$

10

Pipeline Parallel: Split the inputs to reduce bubbles within one single node.

class ModelParallelResNet50(ResNet):

```
def __init__(self, *args, **kwargs):
   super(ModelParallelResNet50, self).__init__(
        Bottleneck, [3, 4, 6, 3], num_classes=num_classes, *args, **kwargs)
```

self.seq1 = nn.Sequential(self.conv1, self.bn1, self.relu,

self.maxpool,

```
self.layer1,
    self.layer2
).to('cuda:0')
```

```
self.seq2 = nn.Sequential(
    self.layer3,
    self.layer4,
    self.avgpool,
).to('cuda:1')
```

self.fc.to('cuda:1')

```
def forward(self, x):
   x = self.seq2(self.seq1(x).to('cuda:1'))
   return self.fc(x.view(x.size(0), -1))
```

```
class PipelineParallelResNet50(ModelParallelResNet50):
```

```
def __init__(self, split_size=20, *args, **kwargs):
    super(PipelineParallelResNet50, self). init (*args, **kwargs)
   self.split_size = split_size
```

```
def forward(self, x):
```

```
splits = iter(x.split(self.split_size, dim=0))
s_next = next(splits)
s prev = self.seq1(s next).to('cuda:1')
ret = []
```

```
for s next in splits:
    # A. `'s prev`' runs on ``cuda:1``
    s_prev = self.seq2(s_prev)
    ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))
```

B. ``s_next`` runs on ``cuda:0``, which can run concurrently with A s_prev = self.seq1(s_next).to('cuda:1')

```
s_prev = self.seq2(s_prev)
ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))
```

return torch.cat(ret)

Pytorch launches the GPUs asynchronously so that we can have self.seq2(s prev) and self.seq1(s next) run concurrently with different micro-batches of data.

Pipeline Parallelism in pytorch

torch.distributed.pipelining

• It consists of two stages

o build PipelineStage

- manually splitting the model
- splitting model automatically

 $_{\odot}$ use PipelineSchedule for execution

class Transformer(nn.Module):

```
def __init__(self, model_args: ModelArgs):
```

super().__init__()

self.tok_embeddings = nn.Embedding(...)

Using a ModuleDict lets us delete layers without affecting names, ensuring checkpoints will correctly save and load.

```
self.layers = torch.nn.ModuleDict()
for layer_id in range(model_args.n_layers):
    self.layers[str(layer_id)] = TransformerBlock(...)
self.output = nn.Linear(...)
```

def forward(self, tokens: torch.Tensor):

Handling layers being 'None' at runtime enables easy pipeline splitting h = self.tok_embeddings(tokens) if self.tok_embeddings else tokens for layer in self.layers.values(): h = layer(h, self.freqs_cis) h = self.norm(h) if self.norm else h output = self.output(h).float() if self.output else h return output

https://pytorch.org/docs/main/distributed.pipelining.html

from torch.distributed.pipelining import PipelineStage

```
with torch.device("meta"):
 assert num_stages == 2, "This is a simple 2-stage example"
# we construct the entire model, then delete the parts we do not need for this stage # in practice, this can
be done using a helper function that automatically divides up layers across stages.
 model = Transformer()
 if stage_index == 0: # prepare the first stage model
 del model.layers["1"]
  model.norm = None
  model.output = None
 elif stage_index == 1: # prepare the second stage model
  model.tok_embeddings = None
  del model.layers["0"]
 stage = PipelineStage(model, stage_index, num_stages, device)
```

from torch.distributed.pipelining import ScheduleGPipe

Create a schedule

schedule = ScheduleGPipe(stage, n_microbatches)

Input data (whole batch)

x = torch.randn(batch_size, in_dim, device=device)

Run the pipeline with input `x` *#* `x` *will be divided into microbatches automatically*

if rank == 0:

schedule.step(x)

else:

```
output = schedule.step()
```

GPipe Performance

Normalized training throughput using Gpipe with different # of partitions K and different # of micro-batches M on TPUs and GPUs without high-speed interconnect.

TPU	A	moebaN	let	Tr	ansform	ner	GPU	A	moeba	Net	Tr	mer	
K =	2	4	8	2	4	8	K =	2	4	8	2	4	8
M = 1	1	1.13	1.38	1	1.07	1.3	M = 32	1	1.7	2.7	1	1.8	3.
M = 4	1.07	1.26	1.72	1.7	3.2	4.8							
M = 32	1.21	1.84	3.48	1.8	3.4	6.3							

8

Gradient Checkpointing

Re-materialization

- Forward pass: each accelerator only stores output activations
- Backward pass: the k–th accelerator recomputes the composite forward function ${\rm F}_{\rm k}$

Vanilla backprop

- Memory for activations: O(n)
- Node computation: *O(n)*

Memory poor backprop

- Memory for activations: O(1)
- Node computation: O(n²)

Gradient Checkpointing

Gradient checkpoint

- Cash the activations of every sqrt(n) layers
- Memory for activations: O(n)
- Node computation: O(sqrt(n) * sqrt(n)) = O(n)

Standard Pipeline Model Parallel

									_												_													
Device 1	1	2	3	4	5	6	7	8							1	2	3	4	5	6	7	8	9	10	11	12	13	141	51	6				
Device 2		1	2	3	4	5	6	7	8					1	2	3	4	5	6	7	8		Γ	9	10	11	12	1314	41	51	б			
Device 3			1	2	3	4	5	6	7	8			1	2	3	4	5	6	7	8			Γ		9	10	11	121:	31	41	516			9
Device 4				1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				I			9	10	111:	21:	31	415	16	9	10
Time →									Devices idle																									
																						_												

Forward Pass

Backward Pass

number of micro-batches in a batch: mnumber of pipeline stages (number of devices used for pp): pideal time per iteration: t_{id} , forward pass for single micro-batch: t_f , backward pass: t_b

bubble time fraction (pipeline bubble size):
$$\frac{t_{pb}}{t_{id}} = \frac{(p-1) \cdot (t_f + t_b)}{m \cdot (t_f + t_b)} = \frac{p-1}{m}$$

PipeDream-Flush

• PipeDream-Flush – start backward as soon as possible

Interleaved Pipeline Parallel

• Schedule with Interleaved Stages

≠int.

 t_{id}

number of micro-batches in a batch: *m*

number of pipeline stages (number of devices used for pp): p

```
model chunks: v , pipeline bubble time: t_{pb}^{\text{int.}} = \frac{(p-1) \cdot (t_f + t_b)}{v}
```

bubble time fraction (pipeline bubble size):

Quiz 8

• on canvas

Tensor Parallelism

Tensor Parallelism

is equivalent to

Tensor Parallelism for FFN

$$egin{aligned} Y &= GeLU(XA) \ X &= egin{bmatrix} X_1 & X_2 \end{bmatrix}, A &= egin{bmatrix} A_1 \ A_2 \end{bmatrix} & Y &= GeLU(X_1A_1 + X_2A_2) \end{aligned}$$

 $GeLU(X_1A_1+X_2A_2)
eq GeLU(X_1A_1)+GeLU(X_2A_2)$

All-reduce is needed !

Tensor Parallelism for FFN

Y = GeLU(XA)

 $A = \left[A_1, A_2\right]$

 $egin{bmatrix} Y_1 & Y_2 \end{bmatrix} = egin{bmatrix} GeLU(XA_1), GeLU(XA_2) \end{bmatrix}$

All-reduce is **not** needed !

Tensor Parallelism for Self-Attention

Tensor Parallelism - Embeddings

- Input embedding
 - Split over columns

 $E = [E_1, E_2]$ (column-wise)

- all-reduce is required
- Output embedding
 - Split over columns GEMM $[Y_1, Y_2] = [XE_1, XE_2]$
 - Fuse outputs with cross-entropy loss (huge reduction in communication)
 - all-gather is needed

Tensor Parallelism

- Layer normalization, dropout, residual connections
 - Duplicate across GPUs
- Each model parallel worker optimizes its own set of parameters

Combination of Pipeline and Tensor Model Parallelism

Combination of Pipeline and Tensor Model Parallelism

 Takeaway #1: When considering different forms of model parallelism, tensor model parallelism should generally be used up to degree g when using g-GPU servers, and then pipeline model parallelism can be used to scale up to larger models across servers

Figure 13: Throughput per GPU of various parallel configurations that combine pipeline and tensor model parallelism using a GPT model with 162.2 billion parameters and 64 A100 GPUs.

Model Parallel + Data Parallel

• Takeaway #2: When using data and model parallelism, a total model-parallel size of $M = t \cdot p$ should be used so that the model's parameters and intermediate metadata fit in GPU memory; data parallelism can be used to scale up training to more GPUs.

Figure 6: Fraction of time spent idling due to pipeline flush (pipeline bubble size) versus data-parallel size (d), for different numbers of GPUs (n) and ratio of batch size to microbatch size (b' = B/b).

Summary

- Pipeline Parallelism

 split by layers (horizonal split)
 eliminate the bubbles (idle)
 interleaving forward/backward
- Tensor Parallelism
 o split the matrix computation