
11868 LLM Systems

Distributed Training –

Model Parallelism
Lei Li

• Model Parallel

• Pipeline Parallelism

• Tensor Parallelism

2

Today’s Topic

Model Parallelism

3

Motivation: The size of models increases exponentially fast and large.

It is no longer possible to fit these large models into the memory of a

single GPU.

Transformer
GPT1

GPT2

GPT3 Gopher
PALM

GPT4

LLaMA3.1

DeepSeek-v3

0

0

1

10

100

1,000

10,000

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

size(B)

Model Parallel

4

Model Parallel: memory usage and computation of a model

is distributed across multiple workers.

Distributed layer-wise computation Distributed tensor computation

F0

F1

F2

F3

B0

B1

B2

B3

loss

device 3, layer 3

device 2, layer 2

device 1, layer 1

device 0, layer 0

grad update

Pipeline Parallelism

5

Naïve Model Parallel: The model is distributed across multiple

GPUs over layers.

Any disadvantage?

all but one GPU is idle at any given moment!

F0

F1

F2

F3

B0

B1

B2

B3

loss

dev3, layer 3

dev2, layer 2

dev1, layer 1

dev0, layer 0

grad update

F0

F1

F2

F3

B0

B1

B2

B3

time

dev3

dev2

dev1

dev0 update

update

update

update

nccl send/recv

6

Pipeline Parallelism
Naïve Model Parallel: The model is distributed across

multiple GPUs over layers within one single node.

device0

device1

7

nccl send/recv

• GPipe: Divides input data mini-batches into smaller micro-

batches.

8

Pipeline Parallel

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

9

Pipeline Parallelism

GPipe: Divides input data mini-batches into smaller micro-batches.

(i) the number of model partitions K

(ii) the number of micro-batches M

(iii) the sequence and definitions of L layers that define the model
[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

10

Pipeline Parallelism
GPipe: Divides input mini-batches into smaller micro-batches.

During backward, recomputes forward

Bubble overhead: 𝑂(
𝐾−1

𝑀+𝐾−1
) could be negligible when 𝑀 > 4 × 𝐾

Communication overhead: transfer activation tensors at the partition boundaries

Peak activation memory: 𝑂(𝑁 × 𝐿) ➔ 𝑂(𝑁 +
𝐿

𝐾
×

𝑁

𝑀
)

11

Pipeline Parallelism
Pipeline Parallel: Split the inputs to reduce bubbles within one

single node.

Pytorch launches the GPUs asynchronously so that we can have
self.seq2(s_prev) and self.seq1(s_next) run

concurrently with different micro-batches of data.

torch.distributed.pipelining

• It consists of two stages

o build PipelineStage
▪ manually splitting the model

▪ splitting model automatically

o use PipelineSchedule for execution

12

Pipeline Parallelism in pytorch

13

class Transformer(nn.Module):
 def __init__(self, model_args: ModelArgs):
 super().__init__()
 self.tok_embeddings = nn.Embedding(...)
 # Using a ModuleDict lets us delete layers without affecting names, ensuring checkpoints will correctly save and
load.
 self.layers = torch.nn.ModuleDict()
 for layer_id in range(model_args.n_layers):
 self.layers[str(layer_id)] = TransformerBlock(...)
 self.output = nn.Linear(...)

 def forward(self, tokens: torch.Tensor):
 # Handling layers being 'None' at runtime enables easy pipeline splitting
 h = self.tok_embeddings(tokens) if self.tok_embeddings else tokens
 for layer in self.layers.values():
 h = layer(h, self.freqs_cis)
 h = self.norm(h) if self.norm else h
 output = self.output(h).float() if self.output else h
 return output

https://pytorch.org/docs/main/distributed.pipelining.html

https://pytorch.org/docs/main/distributed.pipelining.html

14

from torch.distributed.pipelining import PipelineStage

with torch.device("meta"):
 assert num_stages == 2, "This is a simple 2-stage example"
 # we construct the entire model, then delete the parts we do not need for this stage # in practice, this can
be done using a helper function that automatically divides up layers across stages.
 model = Transformer()
 if stage_index == 0: # prepare the first stage model
 del model.layers["1"]
 model.norm = None
 model.output = None
 elif stage_index == 1: # prepare the second stage model
 model.tok_embeddings = None
 del model.layers["0"]
 stage = PipelineStage(model, stage_index, num_stages, device)

15

from torch.distributed.pipelining import ScheduleGPipe
Create a schedule
schedule = ScheduleGPipe(stage, n_microbatches)
Input data (whole batch)
x = torch.randn(batch_size, in_dim, device=device)
Run the pipeline with input `x` # `x` will be divided into microbatches automatically
if rank == 0:
 schedule.step(x)
else:
 output = schedule.step()

16

GPipe Performance

Normalized training throughput using Gpipe with different #

of partitions K and different # of micro-batches M on TPUs

and GPUs without high-speed interconnect.

17

Gradient Checkpointing

Re-materialization

• Forward pass: each accelerator only stores output activations

• Backward pass: the k–th accelerator recomputes the composite

forward function Fk

Vanilla backprop Memory poor backprop

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).

[2] https://github.com/cybertronai/gradient-checkpointing

▪ Memory for activations: O(n)

▪ Node computation: O(n)

▪ Memory for activations: O(1)

▪ Node computation: O(n2)

https://github.com/cybertronai/gradient-checkpointing

18

Gradient Checkpointing

Gradient checkpoint

• Cash the activations of every sqrt(n) layers

• Memory for activations: O(n)

• Node computation: O(sqrt(n) * sqrt(n)) = O(n)

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).

[2] https://github.com/cybertronai/gradient-checkpointing

https://github.com/cybertronai/gradient-checkpointing

19

Standard Pipeline Model Parallel

number of micro-batches in a batch: m

number of pipeline stages (number of devices used for pp): p

ideal time per iteration: tid , forward pass for single micro-batch: tf , backward pass: tb

bubble time fraction (pipeline bubble size):

20

PipeDream-Flush

• PipeDream-Flush – start backward as soon as possible

Memory-Efficient Pipeline-Parallel DNN Training. Narayanan et al ICML 2021.

number of micro-batches in a batch: m

number of pipeline stages (number of devices used for pp): p

model chunks: v , pipeline bubble time:

bubble time fraction (pipeline bubble size):
21

Interleaved Pipeline Parallel

• Schedule with Interleaved Stages

Megatron-LM. Narayanan et al 2021.

• on canvas

22

Quiz 8

Tensor Parallelism

23

24

Tensor Parallelism

25

Tensor Parallelism for FFN

All-reduce is needed！

26

Tensor Parallelism for FFN

All-reduce is not needed！

27

Tensor Parallelism for Self-Attention

• Split weights over columns (heads)

• All-reduce is not needed！

• Input embedding

• Split over columns

• all-reduce is required

• Output embedding

• Split over columns

• Fuse outputs with

cross-entropy loss

(huge reduction in

communication)

• all-gather is needed
28

Tensor Parallelism - Embeddings

• Layer normalization, dropout,

residual connections

• Duplicate across GPUs

• Each model parallel worker

optimizes its own set of

parameters

29

Tensor Parallelism

30

Combination of Pipeline and Tensor

Model Parallelism

31

• Takeaway #1: When considering different forms of model parallelism, tensor

model parallelism should generally be used up to degree 𝑔 when using 𝑔-GPU

servers, and then pipeline model parallelism can be used to scale up to larger

models across servers

Combination of Pipeline and Tensor

Model Parallelism

32

• Takeaway #2: When using data and model parallelism, a total

model-parallel size of 𝑀 = 𝑡 · 𝑝 should be used so that the model’s

parameters and intermediate metadata fit in GPU memory; data

parallelism can be used to scale up training to more GPUs.

Model Parallel + Data Parallel

• Pipeline Parallelism

o split by layers (horizonal split)

o eliminate the bubbles (idle)

o interleaving forward/backward

• Tensor Parallelism

o split the matrix computation

35

Summary

	Slide 1: 11868 LLM Systems Distributed Training – Model Parallelism
	Slide 2: Today’s Topic
	Slide 3: Model Parallelism
	Slide 4: Model Parallel
	Slide 5: Pipeline Parallelism
	Slide 6: Pipeline Parallelism
	Slide 7
	Slide 8: Pipeline Parallel
	Slide 9: Pipeline Parallelism
	Slide 10: Pipeline Parallelism
	Slide 11: Pipeline Parallelism
	Slide 12: Pipeline Parallelism in pytorch
	Slide 13
	Slide 14
	Slide 15
	Slide 16: GPipe Performance
	Slide 17: Gradient Checkpointing
	Slide 18: Gradient Checkpointing
	Slide 19: Standard Pipeline Model Parallel
	Slide 20: PipeDream-Flush
	Slide 21: Interleaved Pipeline Parallel
	Slide 22: Quiz 8
	Slide 23: Tensor Parallelism
	Slide 24: Tensor Parallelism
	Slide 25: Tensor Parallelism for FFN
	Slide 26: Tensor Parallelism for FFN
	Slide 27: Tensor Parallelism for Self-Attention
	Slide 28: Tensor Parallelism - Embeddings
	Slide 29: Tensor Parallelism
	Slide 30: Combination of Pipeline and Tensor Model Parallelism
	Slide 31
	Slide 32: Model Parallel + Data Parallel
	Slide 35: Summary

