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• Model Parallel 

• Pipeline Parallelism

• Tensor Parallelism
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Today’s Topic



Model Parallelism
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Motivation: The size of models increases exponentially fast and large. 

It is no longer possible to fit these large models into the memory of a 

single GPU. 
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Model Parallel
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Model Parallel: memory usage and computation of a model 

is distributed across multiple workers.

Distributed layer-wise computation Distributed tensor computation
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Pipeline Parallelism
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Naïve Model Parallel: The model is distributed across multiple 

GPUs over layers. 

Any disadvantage?

all but one GPU is idle at any given moment!
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Pipeline Parallelism
Naïve Model Parallel: The model is distributed across 

multiple GPUs over layers within one single node.

device0

device1
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nccl send/recv



• GPipe: Divides input data mini-batches into smaller micro-

batches.
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Pipeline Parallel

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).
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Pipeline Parallelism

GPipe: Divides input data mini-batches into smaller micro-batches.

(i) the number of model partitions K

(ii) the number of micro-batches M

(iii) the sequence and definitions of L layers that define the model
[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).
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Pipeline Parallelism
GPipe: Divides input mini-batches into smaller micro-batches.

During backward, recomputes forward 

Bubble overhead: 𝑂(
𝐾−1

𝑀+𝐾−1
) could be negligible when 𝑀 > 4 × 𝐾

Communication overhead: transfer activation tensors at the partition boundaries

Peak activation memory: 𝑂(𝑁 × 𝐿) ➔ 𝑂(𝑁 +
𝐿

𝐾
×

𝑁

𝑀
) 
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Pipeline Parallelism
Pipeline Parallel: Split the inputs to reduce bubbles within one 

single node.

Pytorch launches the GPUs asynchronously so that we can have 
self.seq2(s_prev) and self.seq1(s_next) run 

concurrently with different micro-batches of data.



torch.distributed.pipelining

• It consists of two stages

o build PipelineStage
▪ manually splitting the model

▪ splitting model automatically

o use PipelineSchedule for execution
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Pipeline Parallelism in pytorch
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class Transformer(nn.Module): 
  def __init__(self, model_args: ModelArgs): 
    super().__init__() 
    self.tok_embeddings = nn.Embedding(...) 
    # Using a ModuleDict lets us delete layers without affecting names, ensuring checkpoints will correctly save and 
load. 
    self.layers = torch.nn.ModuleDict() 
    for layer_id in range(model_args.n_layers):  
      self.layers[str(layer_id)] = TransformerBlock(...) 
    self.output = nn.Linear(...) 

  def forward(self, tokens: torch.Tensor): 
    # Handling layers being 'None' at runtime enables easy pipeline splitting 
    h = self.tok_embeddings(tokens) if self.tok_embeddings else tokens 
    for layer in self.layers.values(): 
      h = layer(h, self.freqs_cis) 
    h = self.norm(h) if self.norm else h 
    output = self.output(h).float() if self.output else h 
    return output

https://pytorch.org/docs/main/distributed.pipelining.html 

https://pytorch.org/docs/main/distributed.pipelining.html
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from torch.distributed.pipelining import PipelineStage 

with torch.device("meta"): 
  assert num_stages == 2, "This is a simple 2-stage example" 
  # we construct the entire model, then delete the parts we do not need for this stage # in practice, this can 
be done using a helper function that automatically divides up layers across stages. 
  model = Transformer() 
  if stage_index == 0: # prepare the first stage model 
    del model.layers["1"] 
    model.norm = None 
    model.output = None 
  elif stage_index == 1: # prepare the second stage model   
    model.tok_embeddings = None 
    del model.layers["0"] 
  stage = PipelineStage(model, stage_index, num_stages, device) 
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from torch.distributed.pipelining import ScheduleGPipe 
# Create a schedule 
schedule = ScheduleGPipe(stage, n_microbatches) 
# Input data (whole batch) 
x = torch.randn(batch_size, in_dim, device=device) 
# Run the pipeline with input `x` # `x` will be divided into microbatches automatically 
if rank == 0: 
  schedule.step(x) 
else: 
  output = schedule.step()
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GPipe Performance

Normalized training throughput using Gpipe with different # 

of partitions K and different # of micro-batches M on TPUs 

and GPUs without high-speed interconnect.
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Gradient Checkpointing

Re-materialization

• Forward pass: each accelerator only stores output activations

• Backward pass: the k–th accelerator recomputes the composite 

forward function Fk

Vanilla backprop                                         Memory poor backprop

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).

[2] https://github.com/cybertronai/gradient-checkpointing

▪ Memory for activations: O(n)

▪ Node computation: O(n)

▪ Memory for activations: O(1)

▪ Node computation: O(n2)

https://github.com/cybertronai/gradient-checkpointing
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Gradient Checkpointing

Gradient checkpoint

• Cash the activations of every sqrt(n) layers

• Memory for activations: O(n)

• Node computation: O(sqrt(n) * sqrt(n)) = O(n)

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).

[2] https://github.com/cybertronai/gradient-checkpointing

https://github.com/cybertronai/gradient-checkpointing
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Standard Pipeline Model Parallel

number of micro-batches in a batch: m

number of pipeline stages (number of devices used for pp): p

ideal time per iteration: tid , forward pass for single micro-batch: tf , backward pass: tb

bubble time fraction (pipeline bubble size):
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PipeDream-Flush

• PipeDream-Flush – start backward as soon as possible

Memory-Efficient Pipeline-Parallel DNN Training. Narayanan et al ICML 2021.



number of micro-batches in a batch: m

number of pipeline stages (number of devices used for pp): p

model chunks: v , pipeline bubble time: 

bubble time fraction (pipeline bubble size):  
21

Interleaved Pipeline Parallel

• Schedule with Interleaved Stages

Megatron-LM. Narayanan et al 2021.



• on canvas
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Quiz 8



Tensor Parallelism
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Tensor Parallelism
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Tensor Parallelism for FFN

All-reduce is needed！
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Tensor Parallelism for FFN

All-reduce is not needed！
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Tensor Parallelism for Self-Attention

• Split weights over columns (heads)

• All-reduce is not needed！



• Input embedding

• Split over columns

• all-reduce is required

• Output embedding

• Split over columns

• Fuse outputs with 

cross-entropy loss 

(huge reduction in 

communication)

• all-gather is needed
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Tensor Parallelism - Embeddings



• Layer normalization, dropout, 

residual connections

• Duplicate across GPUs

• Each model parallel worker 

optimizes its own set of 

parameters
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Tensor Parallelism
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Combination of Pipeline and Tensor 

Model Parallelism
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• Takeaway #1: When considering different forms of model parallelism, tensor 

model parallelism should generally be used up to degree 𝑔 when using 𝑔-GPU 

servers, and then pipeline model parallelism can be used to scale up to larger 

models across servers

Combination of Pipeline and Tensor 

Model Parallelism
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• Takeaway #2: When using data and model parallelism, a total 

model-parallel size of 𝑀 = 𝑡 · 𝑝 should be used so that the model’s 

parameters and intermediate metadata fit in GPU memory; data 

parallelism can be used to scale up training to more GPUs.

Model Parallel + Data Parallel



• Pipeline Parallelism

o split by layers (horizonal split) 

o eliminate the bubbles (idle)

o interleaving forward/backward

• Tensor Parallelism

o split the matrix computation

35

Summary
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