11868 LLM Systems Distributed Data Parallel Training

Lei Li

Carnegie Mellon University

Language Technologies Institute

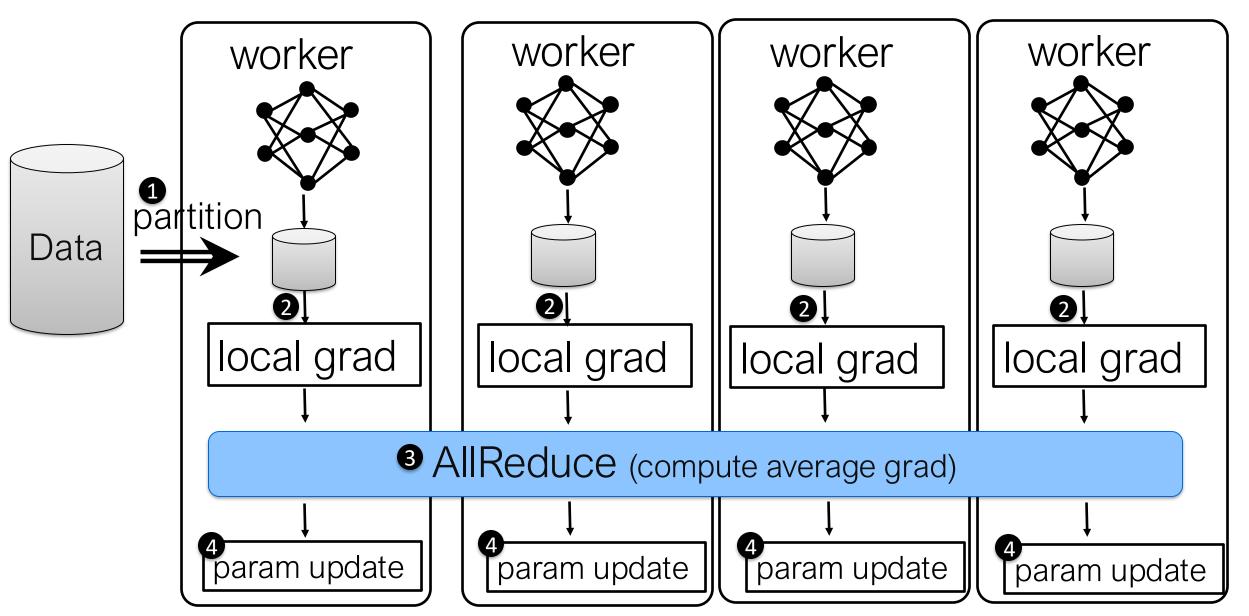
Recap

- Overall idea: partition the data, distribute the forward/backward
- Parameter Server
 - server to update and distribute parameters, worker to get local grad
- NCCL Multi-GPU communication
 - o using ring and batching to reduce the latency for Broadcast
- Data Parallel via All Reduce
 - Efficient Ring AllReduce (ScatterReduce+AllGather)

NCCL Primitives

- Broadcast
- Reduce
- ReduceScatter
- AllGather
- AllReduce

Data Parallel

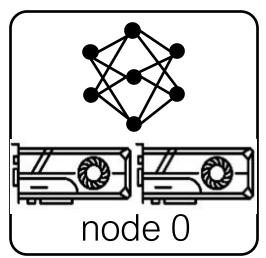


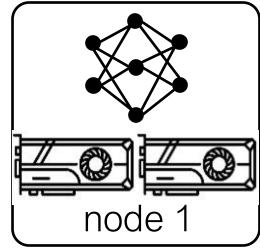
Outline

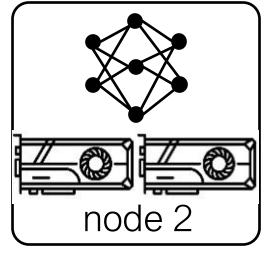
- Distributed Data Parallel Training
- Design and implementation of Distributed Data Parallel
- Code walkthrough:
 - Using DDP in PyTorch

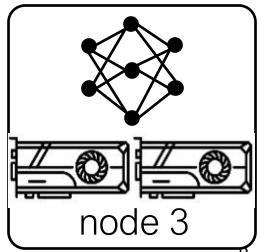
Distributed Data Parallel

- Same as Data Parallel
- multiple nodes, each with multiple GPUs
 - Create replicas of a model on multiple nodes
 - Each model performs the forward pass and the backward pass independently
 - o Gather average gradients across nodes
 - Optimizers run locally (identical)









PyTorch Distributed: Experiences on Accelerating Data Parallel Training. VLDB 2020.

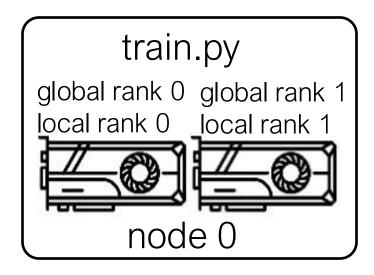
Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith Chintala

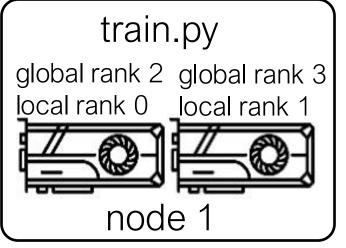
Design Goal of DDP

- Non-intrusive: Developers should be able to reuse the local training script with minimal modifications.
- Interceptive: The API needs to allow the implementation to intercept various signals and trigger appropriate algorithms promptly. The API must expose as many optimization opportunities as possible to the internal implementation.

Setting up the Distributed Process

- World size
 - total number of processes W
- Global rankglobal process id
- Local ranko local process id





Launch Distributed Processes

The launch.py (torch/distributed/launch.py) will pass world size, global rank, master address, master port via env vars, and local rank as a commandline parameter to every instance

```
Env Vars: "MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE"

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--local_rank", type=int, default=0)
    parser.add_argument("--local_world_size", type=int, default=1) args =
    parser.parse_args()
    local_proc(args.local_world_size, args.local_rank)
```

Launching Local Process

```
def local_proc(local_world_size, local_rank):
    dist.init_process_group(backend="nccl")
    local_train(local_world_size, local_rank)
    dist.destroy_process_group()
```

start process group

tear down process group

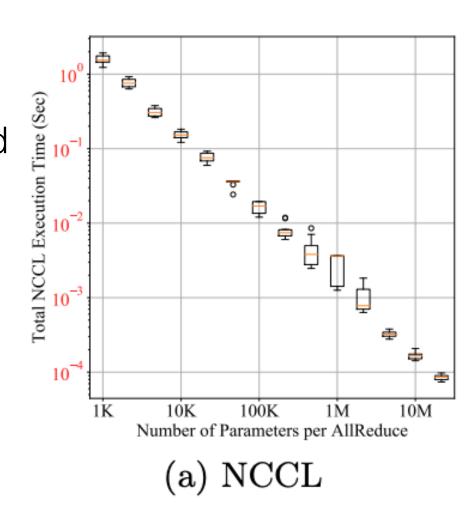
```
def demo basic(local world size, local rank):
 n = torch.cuda.device count() // local world size
 device ids = list(range(local rank * n, (local rank + 1) * n))
 model = MyModel().cuda(device ids[0])
 ddp model = DDP(model, device ids)
 loss fn = nn.MSELoss()
 optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
 optimizer.zero grad()
 outputs = ddp model(torch.randn(20, 10))
 labels = torch.randn(20, 5).to(device ids[0])
 loss fn(outputs, labels).backward()
 optimizer.step()
```

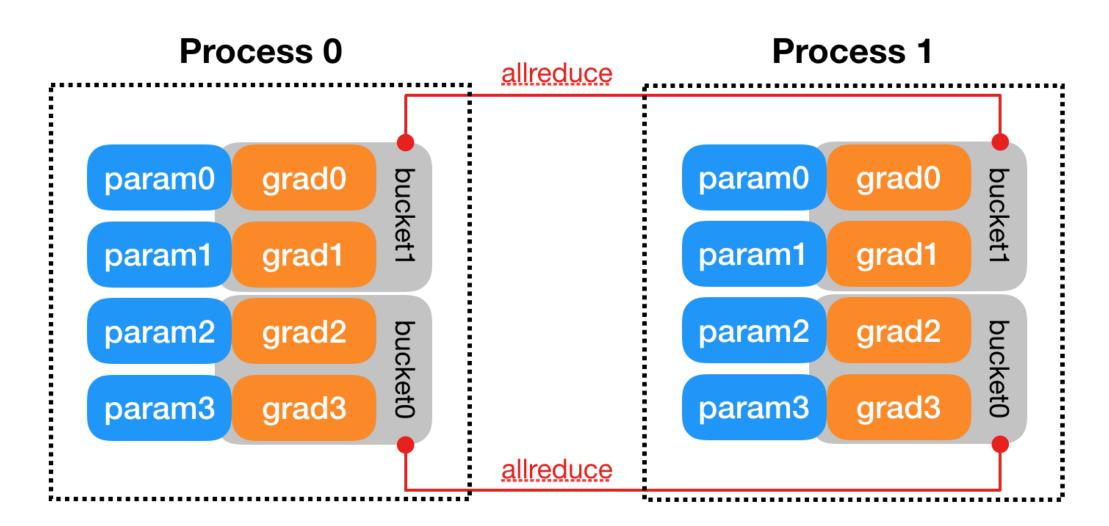
How to Implement Distributed Data Parallel

- Naïve solution: synchronize gradients after the entire backward pass finishes
 - o What can be improved?

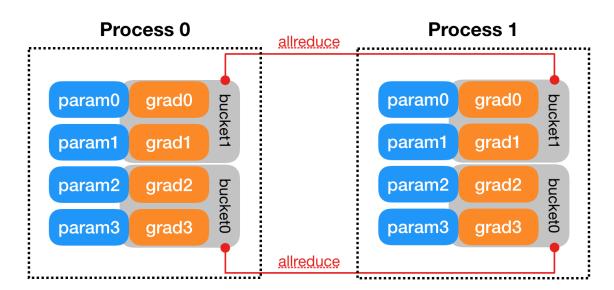
Implementing Distributed Data Parallel

- Naïve solution: synchronize gradients after the *entire* backward pass finishes
 - We can overlap gradient computation and synchronization!
- But how often should we synchronize?
 Per parameter?
 - Too much synchronization slows down execution

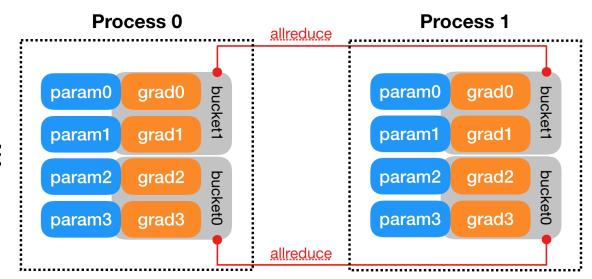




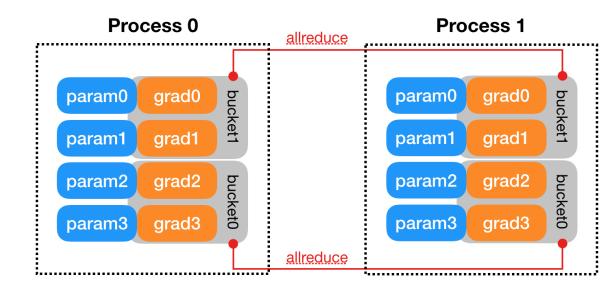
- Bucket size can be configured by setting the bucket_cap_mb argument in DDP constructor.
- The mapping from parameter gradients to buckets is determined at the construction time, based on the bucket size limit and parameter sizes.



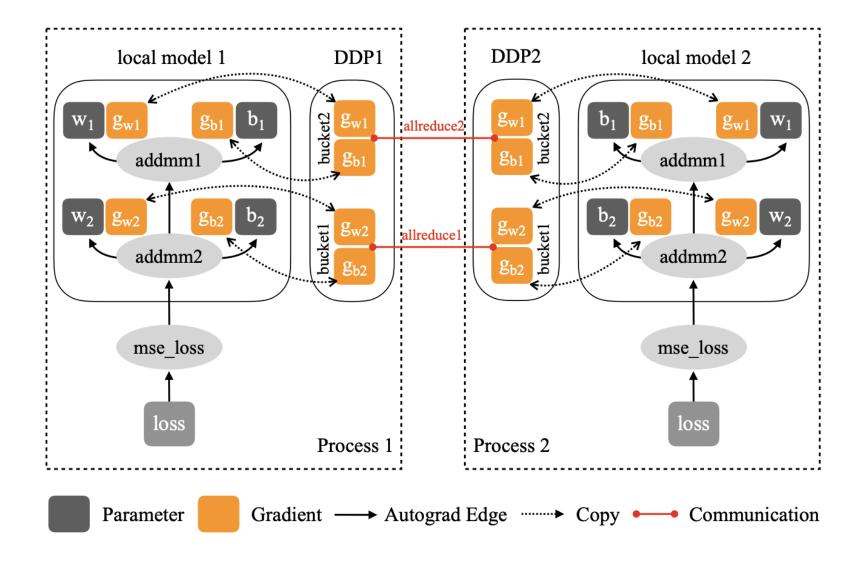
- Model parameters are allocated into buckets in (roughly) the reverse order of Model.parameters() from the given model.
- DDP expects gradients to become ready during the backward pass in approximately that order.



- When gradients in one bucket are all ready, the Reducer kicks off an asynchronous allReduce on that bucket to calculate average of gradients across all processes.
- Overlapping computation (backward) with communication (AllReduce)



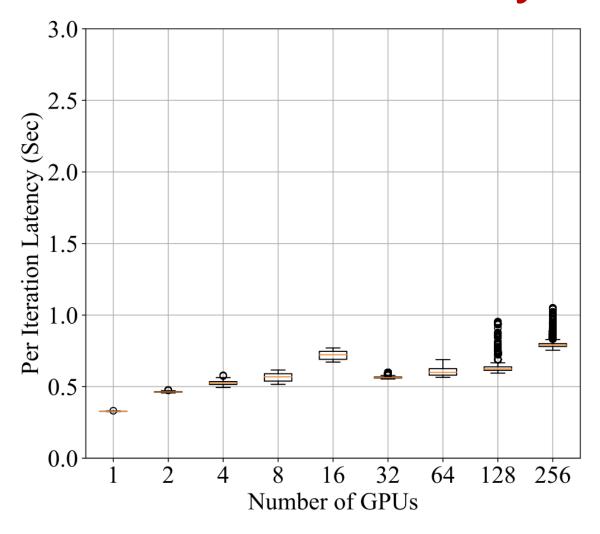
Gradient Reduction



DDP Implementation

```
// The function `autograd hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd hook(size t index) {
         mark variable ready(index);
void Reducer::mark variable ready(size t variable index) {
         const auto& bucket index = variable locators [variable index];
         auto& bucket = buckets [bucket index.bucket index];
         if (--bucket.pending == 0) {
                  mark bucket ready(bucket index.bucket index);
void Reducer::mark bucket ready(size t bucket index) {
         for (; next bucket < buckets .size() && buckets [next bucket ].pending == 0; next bucket ++) {
                  num buckets ready ++;
                  auto& bucket = buckets [next bucket ];
                  all reduce bucket(bucket);
void Reducer::all reduce bucket(Bucket& bucket) {
         auto variables for bucket = get variables for bucket(next bucket , bucket);
         const auto& tensor = bucket.gradients;
         GradBucket grad bucket(next bucket , buckets .size(), tensor, bucket.offsets,
                  bucket.lengths, bucket.sizes vec, variables for bucket);
         bucket.future work = run comm hook(grad bucket);
```

DDP Scalability



(c) BERT on NCCL

DDP Reduces Latency by Overlapping Communication and Computation

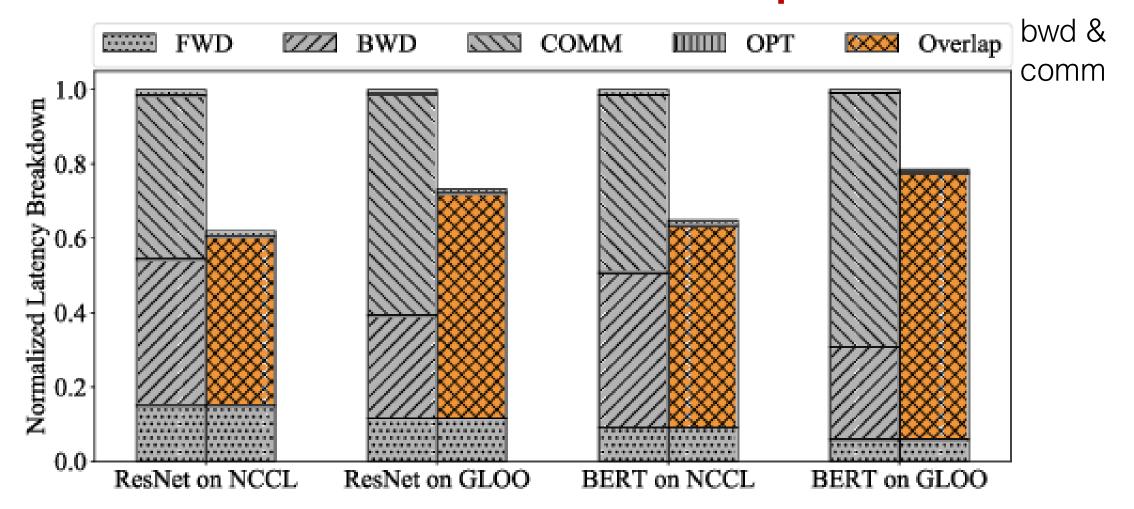


Figure 6: Per Iteration Latency Breakdown

Code walkthrough

Quiz 7

on Canvas.

Summary

- Data Parallel via All Reduce
- Distributed Data Parallel Training
 - o gradient bucketing
 - overlay backward and AllReduce communication

Reading for next lecture

- Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. 2018
- Shoeybi et al. Megatron-LM: Training Multi-Billion
 Parameter Language Models Using Model Parallelism. 2019
- Narayanan et al. Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, SC 2021