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• Overall idea: partition the data, distribute the 

forward/backward

• Parameter Server

o server to update and distribute parameters, worker to get local 

grad

• NCCL Multi-GPU communication

o using ring and batching to reduce the latency for Broadcast

• Data Parallel via All Reduce 

o Efficient Ring AllReduce (ScatterReduce+AllGather) 2

Recap



• Broadcast

• Reduce

• ReduceScatter

• AllGather

• AllReduce
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NCCL Primitives
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Data Parallel Training

Data
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local grad local grad local grad local grad
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4 AllReduce (compute average grad)
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4 4
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• Distributed Data Parallel Training

• Design and implementation of Distributed Data Parallel 

• Code walkthrough:

o Using DDP in PyTorch 
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Outline



• Same as Data Parallel

• multiple nodes, each with multiple 

GPUs

oCreate replicas of a model on multiple 

nodes 

o Each model performs the forward pass 

and the backward pass independently

oGather average gradients across nodes

oOptimizers run locally (identical)
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Distributed Data Parallel

node 0 node 1

node 2 node 3



PyTorch Distributed: Experiences on Accelerating 

Data Parallel Training. VLDB 2020. 
Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng 

Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith 

Chintala
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• Non-intrusive:  Developers should be able to reuse the local 

training script with minimal modifications. 

• Interceptive: The API needs to allow the implementation to 

intercept various signals and trigger appropriate algorithms 

promptly. The API must expose as many optimization 

opportunities as possible to the internal implementation. 
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Design Goal of DDP

Li et al. PyTorch Distributed: Experiences on Accelerating Data Parallel Training, VLDB 2020.



• World size

o total number of 

processes W

• Global rank

o global process id

• Local rank

o local process id
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Setting up the Distributed Process

node 0

train.py
global rank 0

local rank 0
global rank 1

local rank 1

node 1

train.py
global rank 2

local rank 0
global rank 3

local rank 1



The launch.py (torch/distributed/launch.py) will pass world size, 

global rank, master address, master port via env vars, and local 

rank as a commandline parameter to every instance

if __name__ == "__main__": 
  parser = argparse.ArgumentParser()
  parser.add_argument("--local_rank", type=int, default=0)
  parser.add_argument("--local_world_size", type=int, default=1) args = 
parser.parse_args()
  local_proc(args.local_world_size, args.local_rank)
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Launch Distributed Processes

Env Vars: "MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE"



def local_proc(local_world_size, local_rank):
  dist.init_process_group(backend="nccl")

  local_train(local_world_size, local_rank)

  dist.destroy_process_group()
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Launching Local Process 

start process 

group

tear down 

process group



def demo_basic(local_world_size, local_rank):
  n = torch.cuda.device_count() // local_world_size
  device_ids = list(range(local_rank * n, (local_rank + 1) * n))
  model = MyModel().cuda(device_ids[0])
  ddp_model = DDP(model, device_ids)
  loss_fn = nn.MSELoss()
  optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
  optimizer.zero_grad()
  outputs = ddp_model(torch.randn(20, 10))
  labels = torch.randn(20, 5).to(device_ids[0])
  loss_fn(outputs, labels).backward()
  optimizer.step()
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• Naïve solution: synchronize (AllReduce) gradients after the 

entire backward pass finishes

oWhat can be improved?
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How to Implement Distributed Data Parallel



• Naïve solution: synchronize gradients 

after the entire backward pass finishes

oWe can overlap gradient computation and 

synchronization!

• But how often should we synchronize? 

Per parameter?

o Too much synchronization slows down 

execution
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Implementing Distributed Data Parallel
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Gradient Bucketing
Asynchronously allreduce when a bucket of parameter grads are 

ready. 



• Bucket size can be configured 

by setting 

the bucket_cap_mb argument 

in DDP constructor. 

• The mapping from parameter 

gradients to buckets is 

determined at the construction 

time, based on the bucket size 

limit and parameter sizes.
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Gradient Bucketing



• Model parameters are 

allocated into buckets in 

(roughly) the reverse order 

of Model.parameters() from the 

given model. 

• DDP expects gradients to 

become ready during the 

backward pass in 

approximately that order.
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Gradient Bucketing



• When gradients in one bucket 

are all ready, the Reducer kicks 

off an asynchronous allReduce 

on that bucket to calculate 

average of gradients across all 

processes.

• Overlapping computation 

(backward) with 

communication (AllReduce)
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Gradient Bucketing
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Gradient Reduction
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DDP Implementation
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.

void Reducer::autograd_hook(size_t index) {
 mark_variable_ready(index);
}

void Reducer::mark_variable_ready(size_t variable_index) {

 const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];

if (--bucket.pending == 0) {
 mark_bucket_ready(bucket_index.bucket_index);

}
}

void Reducer::mark_bucket_ready(size_t bucket_index) {
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0; next_bucket_++) {

num_buckets_ready_++; 
auto& bucket = buckets_[next_bucket_];
all_reduce_bucket(bucket);

}
}

void Reducer::all_reduce_bucket(Bucket& bucket) {
 auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
 const auto& tensor = bucket.gradients;
 GradBucket grad_bucket(next_bucket_, buckets_.size(), tensor, bucket.offsets, 

 bucket.lengths, bucket.sizes_vec, variables_for_bucket);
bucket.future_work = run_comm_hook(grad_bucket);

}
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DDP Scalability



DDP Reduces Latency by Overlapping 

Communication and Computation
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bwd & 

comm



https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/ddp_example 
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Code walkthrough

https://github.com/llmsystem/llmsys_code_examples/tree/main/ddp_example
https://github.com/llmsystem/llmsys_code_examples/tree/main/ddp_example


• Data Parallel via All Reduce

• Distributed Data Parallel Training

o gradient bucketing

o overlay backward and AllReduce communication
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Summary



• Huang et al. GPipe: Efficient Training of Giant Neural 

Networks using Pipeline Parallelism. 2018

• Shoeybi et al. Megatron-LM: Training Multi-Billion 

Parameter Language Models Using Model Parallelism. 2019

• Narayanan et al. Efficient Large-Scale Language Model 

Training on GPU Clusters Using Megatron-LM, SC 2021
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Reading for next lecture
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