
11868/11968 LLM Systems

Distributed Data Parallel
Training

Lei Li

1

• Overall idea: partition the data, distribute the

forward/backward

• Parameter Server

o server to update and distribute parameters, worker to get local

grad

• NCCL Multi-GPU communication

o using ring and batching to reduce the latency for Broadcast

• Data Parallel via All Reduce

o Efficient Ring AllReduce (ScatterReduce+AllGather) 2

Recap

• Broadcast

• Reduce

• ReduceScatter

• AllGather

• AllReduce

3

NCCL Primitives

4

Data Parallel Training

Data

worker worker worker worker

local grad local grad local grad local grad

partition
1

2 2 2 2

4 AllReduce (compute average grad)

param update param update param update param update
4 4

3

4 4

• Distributed Data Parallel Training

• Design and implementation of Distributed Data Parallel

• Code walkthrough:

o Using DDP in PyTorch

5

Outline

• Same as Data Parallel

• multiple nodes, each with multiple

GPUs

oCreate replicas of a model on multiple

nodes

o Each model performs the forward pass

and the backward pass independently

oGather average gradients across nodes

oOptimizers run locally (identical)

6

Distributed Data Parallel

node 0 node 1

node 2 node 3

PyTorch Distributed: Experiences on Accelerating

Data Parallel Training. VLDB 2020.
Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng

Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith

Chintala

7

• Non-intrusive: Developers should be able to reuse the local

training script with minimal modifications.

• Interceptive: The API needs to allow the implementation to

intercept various signals and trigger appropriate algorithms

promptly. The API must expose as many optimization

opportunities as possible to the internal implementation.

8

Design Goal of DDP

Li et al. PyTorch Distributed: Experiences on Accelerating Data Parallel Training, VLDB 2020.

• World size

o total number of

processes W

• Global rank

o global process id

• Local rank

o local process id

9

Setting up the Distributed Process

node 0

train.py
global rank 0

local rank 0
global rank 1

local rank 1

node 1

train.py
global rank 2

local rank 0
global rank 3

local rank 1

The launch.py (torch/distributed/launch.py) will pass world size,

global rank, master address, master port via env vars, and local

rank as a commandline parameter to every instance

if __name__ == "__main__":
 parser = argparse.ArgumentParser()
 parser.add_argument("--local_rank", type=int, default=0)
 parser.add_argument("--local_world_size", type=int, default=1) args =
parser.parse_args()
 local_proc(args.local_world_size, args.local_rank)

10

Launch Distributed Processes

Env Vars: "MASTER_ADDR", "MASTER_PORT", "RANK", "WORLD_SIZE"

def local_proc(local_world_size, local_rank):
 dist.init_process_group(backend="nccl")

 local_train(local_world_size, local_rank)

 dist.destroy_process_group()

11

Launching Local Process

start process

group

tear down

process group

def demo_basic(local_world_size, local_rank):
 n = torch.cuda.device_count() // local_world_size
 device_ids = list(range(local_rank * n, (local_rank + 1) * n))
 model = MyModel().cuda(device_ids[0])
 ddp_model = DDP(model, device_ids)
 loss_fn = nn.MSELoss()
 optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
 optimizer.zero_grad()
 outputs = ddp_model(torch.randn(20, 10))
 labels = torch.randn(20, 5).to(device_ids[0])
 loss_fn(outputs, labels).backward()
 optimizer.step()

12

• Naïve solution: synchronize (AllReduce) gradients after the

entire backward pass finishes

oWhat can be improved?

13

How to Implement Distributed Data Parallel

• Naïve solution: synchronize gradients

after the entire backward pass finishes

oWe can overlap gradient computation and

synchronization!

• But how often should we synchronize?

Per parameter?

o Too much synchronization slows down

execution

14

Implementing Distributed Data Parallel

15

Gradient Bucketing
Asynchronously allreduce when a bucket of parameter grads are

ready.

• Bucket size can be configured

by setting

the bucket_cap_mb argument

in DDP constructor.

• The mapping from parameter

gradients to buckets is

determined at the construction

time, based on the bucket size

limit and parameter sizes.

16

Gradient Bucketing

• Model parameters are

allocated into buckets in

(roughly) the reverse order

of Model.parameters() from the

given model.

• DDP expects gradients to

become ready during the

backward pass in

approximately that order.

17

Gradient Bucketing

• When gradients in one bucket

are all ready, the Reducer kicks

off an asynchronous allReduce

on that bucket to calculate

average of gradients across all

processes.

• Overlapping computation

(backward) with

communication (AllReduce)

18

Gradient Bucketing

19

Gradient Reduction

20

DDP Implementation
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.

void Reducer::autograd_hook(size_t index) {
 mark_variable_ready(index);
}

void Reducer::mark_variable_ready(size_t variable_index) {

 const auto& bucket_index = variable_locators_[variable_index];
auto& bucket = buckets_[bucket_index.bucket_index];

if (--bucket.pending == 0) {
 mark_bucket_ready(bucket_index.bucket_index);

}
}

void Reducer::mark_bucket_ready(size_t bucket_index) {
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0; next_bucket_++) {

num_buckets_ready_++;
auto& bucket = buckets_[next_bucket_];
all_reduce_bucket(bucket);

}
}

void Reducer::all_reduce_bucket(Bucket& bucket) {
 auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
 const auto& tensor = bucket.gradients;
 GradBucket grad_bucket(next_bucket_, buckets_.size(), tensor, bucket.offsets,

 bucket.lengths, bucket.sizes_vec, variables_for_bucket);
bucket.future_work = run_comm_hook(grad_bucket);

}

21

DDP Scalability

DDP Reduces Latency by Overlapping

Communication and Computation

22

bwd &

comm

https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/ddp_example

23

Code walkthrough

https://github.com/llmsystem/llmsys_code_examples/tree/main/ddp_example
https://github.com/llmsystem/llmsys_code_examples/tree/main/ddp_example

• Data Parallel via All Reduce

• Distributed Data Parallel Training

o gradient bucketing

o overlay backward and AllReduce communication

30

Summary

• Huang et al. GPipe: Efficient Training of Giant Neural

Networks using Pipeline Parallelism. 2018

• Shoeybi et al. Megatron-LM: Training Multi-Billion

Parameter Language Models Using Model Parallelism. 2019

• Narayanan et al. Efficient Large-Scale Language Model

Training on GPU Clusters Using Megatron-LM, SC 2021

31

Reading for next lecture

	Slide 1: 11868/11968 LLM Systems Distributed Data Parallel Training
	Slide 2: Recap
	Slide 3: NCCL Primitives
	Slide 4: Data Parallel Training
	Slide 5: Outline
	Slide 6: Distributed Data Parallel
	Slide 7: PyTorch Distributed: Experiences on Accelerating Data Parallel Training. VLDB 2020. Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith Chintala
	Slide 8: Design Goal of DDP
	Slide 9: Setting up the Distributed Process
	Slide 10: Launch Distributed Processes
	Slide 11: Launching Local Process
	Slide 12
	Slide 13: How to Implement Distributed Data Parallel
	Slide 14: Implementing Distributed Data Parallel
	Slide 15: Gradient Bucketing
	Slide 16: Gradient Bucketing
	Slide 17: Gradient Bucketing
	Slide 18: Gradient Bucketing
	Slide 19: Gradient Reduction
	Slide 20: DDP Implementation
	Slide 21: DDP Scalability
	Slide 22: DDP Reduces Latency by Overlapping Communication and Computation
	Slide 23: Code walkthrough
	Slide 30: Summary
	Slide 31: Reading for next lecture

