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• Overview of large-scale model training

• Multi-GPU communication

• Distributed Data Parallel Training
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Today’s Topic



Strategies for Scalable Training
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Distributed Training with Multiple GPUs

need to communicate gradients across GPUs!



• NCCL (Nvidia Collective Communication Library)
o provides inter-GPU communication APIs
o both collective and point-to-point send/receive primitives
o supports various of interconnect technologies

• PCIe
• NVLink
• InfiniBand
• IP sockets

oOperations are tied to a CUDA stream.
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Multi-GPU Communication



• Broadcast

• Reduce

• ReduceScatter

• AllGather

• AllReduce
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NCCL Primitives



• The Broadcast operation copies an N-element buffer on the 
root rank to all ranks (devices).

7

Broadcast

ncclResult_t ncclBroadcast(const void* sendbuff, void* recvbuff, 
size_t count, ncclDataType_t datatype, 
int root, ncclComm_t comm, cudaStream_t stream)



• Compute reduction (max, min, sum) across devices and 
write on one rank
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Reduce

ncclResult_t ncclReduce(const void* sendbuff, void* recvbuff, 
size_t count, ncclDataType_t datatype, ncclRedOp_t op, 
int root, ncclComm_t comm, cudaStream_t stream)



• Compute reduction (sum, min, max) across devices and 
writing the result in the receive buffers of every rank.
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AllReduce (=Reduce & Broadcast) 

ncclResult_t ncclAllReduce(const void* sendbuff, 
void* recvbuff, size_t count, ncclDataType_t datatype, 
ncclRedOp_t op, ncclComm_t comm, cudaStream_t stream)



• Compute reduction (sum, min, max) and writing parts of 
results scattered in ranks
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ReduceScatter

ncclResult_t ncclReduceScatter(const void* sendbuff, 
void* recvbuff, size_t recvcount, ncclDataType_t datatype, 
ncclRedOp_t op, ncclComm_t comm, cudaStream_t stream)



• gathers N values from k ranks into an output of size k*N, 
and distributes that result to all ranks (devices).
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AllGather

ncclResult_t ncclAllGather(const void* sendbuff, 
void* recvbuff, size_t sendcount, ncclDataType_t datatype, 
ncclComm_t comm, cudaStream_t stream)

AllReduce = ReduceScatter & AllGather



• device memory local to the CUDA device

• host memory registered using cudaHostRegister or 
cudaGetDevicePointer

• managed and unified memory.
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Data Pointers in CUDA



ncclGroupStart(); 

ncclSend(sendbuff, sendcount, sendtype, peer, comm, stream); 

ncclRecv(recvbuff, recvcount, recvtype, peer, comm, stream); 

ncclGroupEnd();
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Point-to-Point Communication



• NCCL uses rings to move data across all GPUs and 
perform reductions. 
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How Reduce is Implemented?
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth
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Broadcast with unidirectional ring

Step 1: t = N/B 

N=bytes to transfer
B=bandwidth
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Broadcast with unidirectional ring

Step 1: t = N/B 
Step 2: t = N/B 

N=bytes to transfer
B=bandwidth



18

Broadcast with unidirectional ring

Step 1: t = N/B 
Step 2: t = N/B 
Step 3: t = N/B
total time=(K-1) N/B 

N=bytes to transfer
B=bandwidth
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth



20

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB 
break data into S messages
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB 
Step 2: t = N/SB 

break data into S messages
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB 
Step 2: t = N/SB 
Step 3: t = N/SB

break data into S messages
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB 
Step 2: t = N/SB 
Step 3: t = N/SB
Step 4: t = N/SB

break data into S messages
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Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB 
Step 2: t = N/SB 
Step 3: t = N/SB
Step 4: t = N/SB
…
total time=(K-2+S)N/SB
~=N/B 

break data into S messages



//initializing NCCL, group API is required around ncclCommInitRank as it is 
//called across multiple GPUs in each thread/process 
NCCLCHECK(ncclGroupStart()); 
for (int i=0; i<nDev; i++) { 
  CUDACHECK(cudaSetDevice(localRank*nDev + i));
  NCCLCHECK(ncclCommInitRank(comms+i, nRanks*nDev, id, myRank*nDev + i)); 
} 
NCCLCHECK(ncclGroupEnd()); 
//calling NCCL communication API. Group API is required when using 
//multiple devices per thread/process 
NCCLCHECK(ncclGroupStart()); 
for (int i=0; i<nDev; i++) 
  NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, 
ncclFloat, ncclSum, comms[i], s[i]));
NCCLCHECK(ncclGroupEnd()); 
//synchronizing on CUDA stream to complete NCCL communication 
for (int i=0; i<nDev; i++) 
  CUDACHECK(cudaStreamSynchronize(s[i]));
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Example



• Multi-GPU communication

• Distributed Data Parallel Training
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Today’s Topic



• Basic Idea:
oCreate replicas of a 

model on multiple GPUs
o Each model performs 

the forward pass and 
the backward pass 
independently

o Synchronize gradients 
before the optimizer 
step
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Distributed Data Parallel



• Non-intrusive:  Develops should be able to reuse the local 
training script with minimal modifications. 

• Interceptive: The API needs to allow the implementation to 
intercept various signals and trigger appropriate algorithms 
promptly. The API must expose as many optimization 
opportunities as possible to the internal implementation. 
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Design Goal of DDP

Li et al. PyTorch Distributed: Experiences on Accelerating Data Parallel Training, VLDB 2020.



• You can use DDP 
with minimal code 
change in pytorch!
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Distributed 
Data Parallel



• Naïve solution: synchronize gradients after the entire 
backward pass finishes
oWhat can be improved?
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How to Implement Distributed Data Parallel



• Naïve solution: synchronize gradients 
after the entire backward pass finishes
oWe can overlap gradient computation and 

synchronization!

• But how often should we synchronize? 
Per parameter?
o Too much synchronization slows down 

execution
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Implementing Distributed Data Parallel
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Gradient Bucketing



• Bucket size can be configured 
by setting 
the bucket_cap_mb argument 
in DDP constructor. 

• The mapping from parameter 
gradients to buckets is 
determined at the construction 
time, based on the bucket size 
limit and parameter sizes.
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Gradient Bucketing



• Model parameters are 
allocated into buckets in 
(roughly) the reverse order 
of Model.parameters() from the 
given model. 

• DDP expects gradients to 
become ready during the 
backward pass in 
approximately that order.
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Gradient Bucketing



• When gradients in one bucket 
are all ready, the Reducer kicks 
off an asynchronous allReduce 
on that bucket to calculate 
average of gradients across all 
processes.

• Overlapping computation 
(backward) with 
communication (AllReduce)

35

Gradient Bucketing



36

Gradient Reduction
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DDP Implementation
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(size_t index) {
 mark_variable_ready(index);
}

void Reducer::mark_variable_ready(size_t variable_index) {
 const auto& bucket_index = variable_locators_[variable_index];

auto& bucket = buckets_[bucket_index.bucket_index];

if (--bucket.pending == 0) {
 mark_bucket_ready(bucket_index.bucket_index);
}

}

void Reducer::mark_bucket_ready(size_t bucket_index) {
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0; next_bucket_++) {

num_buckets_ready_++; 
auto& bucket = buckets_[next_bucket_];
all_reduce_bucket(bucket);

}
}

void Reducer::all_reduce_bucket(Bucket& bucket) {
 auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
 const auto& tensor = bucket.gradients;
 GradBucket grad_bucket(next_bucket_, buckets_.size(), tensor, bucket.offsets, 

 bucket.lengths, bucket.sizes_vec, variables_for_bucket);
bucket.future_work = run_comm_hook(grad_bucket);

}
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How to Synchronize Gradients?
• Naïve all-reduce
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How to Synchronize Gradients?
• Ring all-reduce
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DDP Scalability



DDP Reduces Latency by Overlapping 
Communication and Computation
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bwd & 
comm



• Motivation: Large models cannot fit into one GPU
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Fully Shared Data Parallel



• Huang et al. GPipe: Efficient Training of Giant Neural 
Networks using Pipeline Parallelism. 2018

• Shoeybi et al. Megatron-LM: Training Multi-Billion 
Parameter Language Models Using Model Parallelism. 2019

• Narayanan et al. Efficient Large-Scale Language Model 
Training on GPU Clusters Using Megatron-LM, SC 2021
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Reading for next lecture


