
11868 LLM Systems
Distributed GPU Training

Lei Li

1

• Overview of large-scale model training

• Multi-GPU communication

• Distributed Data Parallel Training

2

Today’s Topic

Strategies for Scalable Training

3

Partition
the data

single node
MultiGPU

distributed
data parallel

parameter
server

Partition
the Model

Model
parallel

Pipeline
parallel

Tensor
parallel

4

Distributed Training with Multiple GPUs

need to communicate gradients across GPUs!

• NCCL (Nvidia Collective Communication Library)
o provides inter-GPU communication APIs
o both collective and point-to-point send/receive primitives
o supports various of interconnect technologies

• PCIe
• NVLink
• InfiniBand
• IP sockets

oOperations are tied to a CUDA stream.

5

Multi-GPU Communication

• Broadcast

• Reduce

• ReduceScatter

• AllGather

• AllReduce

6

NCCL Primitives

• The Broadcast operation copies an N-element buffer on the
root rank to all ranks (devices).

7

Broadcast

ncclResult_t ncclBroadcast(const void* sendbuff, void* recvbuff,
size_t count, ncclDataType_t datatype,
int root, ncclComm_t comm, cudaStream_t stream)

• Compute reduction (max, min, sum) across devices and
write on one rank

8

Reduce

ncclResult_t ncclReduce(const void* sendbuff, void* recvbuff,
size_t count, ncclDataType_t datatype, ncclRedOp_t op,
int root, ncclComm_t comm, cudaStream_t stream)

• Compute reduction (sum, min, max) across devices and
writing the result in the receive buffers of every rank.

9

AllReduce (=Reduce & Broadcast)

ncclResult_t ncclAllReduce(const void* sendbuff,
void* recvbuff, size_t count, ncclDataType_t datatype,
ncclRedOp_t op, ncclComm_t comm, cudaStream_t stream)

• Compute reduction (sum, min, max) and writing parts of
results scattered in ranks

10

ReduceScatter

ncclResult_t ncclReduceScatter(const void* sendbuff,
void* recvbuff, size_t recvcount, ncclDataType_t datatype,
ncclRedOp_t op, ncclComm_t comm, cudaStream_t stream)

• gathers N values from k ranks into an output of size k*N,
and distributes that result to all ranks (devices).

11

AllGather

ncclResult_t ncclAllGather(const void* sendbuff,
void* recvbuff, size_t sendcount, ncclDataType_t datatype,
ncclComm_t comm, cudaStream_t stream)

AllReduce = ReduceScatter & AllGather

• device memory local to the CUDA device

• host memory registered using cudaHostRegister or
cudaGetDevicePointer

• managed and unified memory.

12

Data Pointers in CUDA

ncclGroupStart();

ncclSend(sendbuff, sendcount, sendtype, peer, comm, stream);

ncclRecv(recvbuff, recvcount, recvtype, peer, comm, stream);

ncclGroupEnd();

13

Point-to-Point Communication

• NCCL uses rings to move data across all GPUs and
perform reductions.

14

How Reduce is Implemented?

15

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

16

Broadcast with unidirectional ring

Step 1: t = N/B

N=bytes to transfer
B=bandwidth

17

Broadcast with unidirectional ring

Step 1: t = N/B
Step 2: t = N/B

N=bytes to transfer
B=bandwidth

18

Broadcast with unidirectional ring

Step 1: t = N/B
Step 2: t = N/B
Step 3: t = N/B
total time=(K-1) N/B

N=bytes to transfer
B=bandwidth

19

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

20

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB
break data into S messages

21

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB
Step 2: t = N/SB

break data into S messages

22

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB
Step 2: t = N/SB
Step 3: t = N/SB

break data into S messages

23

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB
Step 2: t = N/SB
Step 3: t = N/SB
Step 4: t = N/SB

break data into S messages

24

Broadcast with unidirectional ring

N=bytes to transfer
B=bandwidth

Step 1: t = N/SB
Step 2: t = N/SB
Step 3: t = N/SB
Step 4: t = N/SB
…
total time=(K-2+S)N/SB
~=N/B

break data into S messages

//initializing NCCL, group API is required around ncclCommInitRank as it is
//called across multiple GPUs in each thread/process
NCCLCHECK(ncclGroupStart());
for (int i=0; i<nDev; i++) {
 CUDACHECK(cudaSetDevice(localRank*nDev + i));
 NCCLCHECK(ncclCommInitRank(comms+i, nRanks*nDev, id, myRank*nDev + i));
}
NCCLCHECK(ncclGroupEnd());
//calling NCCL communication API. Group API is required when using
//multiple devices per thread/process
NCCLCHECK(ncclGroupStart());
for (int i=0; i<nDev; i++)
 NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size,
ncclFloat, ncclSum, comms[i], s[i]));
NCCLCHECK(ncclGroupEnd());
//synchronizing on CUDA stream to complete NCCL communication
for (int i=0; i<nDev; i++)
 CUDACHECK(cudaStreamSynchronize(s[i]));

25

Example

• Multi-GPU communication

• Distributed Data Parallel Training

26

Today’s Topic

• Basic Idea:
oCreate replicas of a

model on multiple GPUs
o Each model performs

the forward pass and
the backward pass
independently

o Synchronize gradients
before the optimizer
step

27

Distributed Data Parallel

• Non-intrusive: Develops should be able to reuse the local
training script with minimal modifications.

• Interceptive: The API needs to allow the implementation to
intercept various signals and trigger appropriate algorithms
promptly. The API must expose as many optimization
opportunities as possible to the internal implementation.

28

Design Goal of DDP

Li et al. PyTorch Distributed: Experiences on Accelerating Data Parallel Training, VLDB 2020.

• You can use DDP
with minimal code
change in pytorch!

29

Distributed
Data Parallel

• Naïve solution: synchronize gradients after the entire
backward pass finishes
oWhat can be improved?

30

How to Implement Distributed Data Parallel

• Naïve solution: synchronize gradients
after the entire backward pass finishes
oWe can overlap gradient computation and

synchronization!

• But how often should we synchronize?
Per parameter?
o Too much synchronization slows down

execution

31

Implementing Distributed Data Parallel

32

Gradient Bucketing

• Bucket size can be configured
by setting
the bucket_cap_mb argument
in DDP constructor.

• The mapping from parameter
gradients to buckets is
determined at the construction
time, based on the bucket size
limit and parameter sizes.

33

Gradient Bucketing

• Model parameters are
allocated into buckets in
(roughly) the reverse order
of Model.parameters() from the
given model.

• DDP expects gradients to
become ready during the
backward pass in
approximately that order.

34

Gradient Bucketing

• When gradients in one bucket
are all ready, the Reducer kicks
off an asynchronous allReduce
on that bucket to calculate
average of gradients across all
processes.

• Overlapping computation
(backward) with
communication (AllReduce)

35

Gradient Bucketing

36

Gradient Reduction

37

DDP Implementation
// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(size_t index) {
 mark_variable_ready(index);
}

void Reducer::mark_variable_ready(size_t variable_index) {
 const auto& bucket_index = variable_locators_[variable_index];

auto& bucket = buckets_[bucket_index.bucket_index];

if (--bucket.pending == 0) {
 mark_bucket_ready(bucket_index.bucket_index);
}

}

void Reducer::mark_bucket_ready(size_t bucket_index) {
for (; next_bucket_ < buckets_.size() && buckets_[next_bucket_].pending == 0; next_bucket_++) {

num_buckets_ready_++;
auto& bucket = buckets_[next_bucket_];
all_reduce_bucket(bucket);

}
}

void Reducer::all_reduce_bucket(Bucket& bucket) {
 auto variables_for_bucket = get_variables_for_bucket(next_bucket_, bucket);
 const auto& tensor = bucket.gradients;
 GradBucket grad_bucket(next_bucket_, buckets_.size(), tensor, bucket.offsets,

 bucket.lengths, bucket.sizes_vec, variables_for_bucket);
bucket.future_work = run_comm_hook(grad_bucket);

}

38

How to Synchronize Gradients?
• Naïve all-reduce

39

How to Synchronize Gradients?
• Ring all-reduce

42

DDP Scalability

DDP Reduces Latency by Overlapping
Communication and Computation

43

bwd &
comm

• Motivation: Large models cannot fit into one GPU

44

Fully Shared Data Parallel

• Huang et al. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism. 2018

• Shoeybi et al. Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model Parallelism. 2019

• Narayanan et al. Efficient Large-Scale Language Model
Training on GPU Clusters Using Megatron-LM, SC 2021

49

Reading for next lecture

