
Lei Li

11868 LLM Systems

Accelerating Transformer Training and Inference

Project Team Formation

• https://forms.gle/gCggBdC6LEAuQEnh7

• Project proposal: Feb. 28th 23:59 ET

• Mid-term report: April 1st 23:59 ET

• Final Report: April 30th 23:59 ET

https://forms.gle/gCggBdC6LEAuQEnh7

Paper Presentation
• Each group needs to turn in slides (and code example if available) one week

in advance (hard deadline)

• We will give feedbacks

• All team member will prepare and present the work in 45~50mins

• 25-30 mins for group discussion

• We will give in-class quiz problems

LightSeq: A High Performance Inference Library
for Transformers
Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, Lei Li NAACL 2021

LightSeq2: Accelerated Training for Transformer-
based Models on GPUs
Xiaohui Wang, Wei Yang, Ying Xiong, Guyue Huang, Xian Qian, Yufei Ding, Mingxuan Wang, Lei Li

TurboTransformers: An Efficient GPU Serving
System For Transformer Models
Jiarui Fang, Yang Yu, Chengduo Zhao, Jie Zhou PPoPP 2021

TensorRT-LLM (FasterTransformer)
nvidia team

Natural Language
Supervision for Vision (CLIP)

Language Model (BERT,
T5, GPT3/4)

Image Classification (Vision
Transformer, Swin-Transformer)

Speech Recognition
(wav2vec, HuBERT)

Transformers

Text to Image (Stable Diffision)

Transformer Models as universal architecture

💰

Training Large Models Are Expensive!

Carbon footprint:
Training GPT3 =
driving a car for
146 years!

= 1 Car Year CO2

7
<BOS> I like

I like sing

Encoder Decoder

MHA + FFN

MHA
+FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

MHA +
FFN

Softmax Softmax Softmax

I like singing and dancing.

Token
Embedding

Table

我 一和 …

MHA + FFN

Token
Embedding

Table

I like you…

Recap Transformer Architecture

我 喜 欢 唱 歌 和 跳 舞 。

Transformer Training Stages

Model Replicas

Data Shards

Samples

ForwardBackward

Gradients

Synchronization

Aggregated Gradients

Update Parameters

This Lecture
Accelerated GPU Computation for
Transformer

Comparison of Acceleration Libraries for Transformers

Full Transformer Training Inference PyTorch Tensorflow

FasterTransformer ✔ ✘ ✔ ✔ ✔

✔ ✘ ✔ ✔ ?

✔* ✔ ✔ ✔ ✘

✔ ✔ ✔ ✔ ✔

*DeepSpeed implemented Transformer Kernel in Oct 2022

Other Approaches for Acceleration

Alternative Model
Structures: Linformer,

Reformer

Training Strategy:
Shallow to Deep,

Layer Dropout

Efficient Computation:
LAMB, Quantization,

Hardware Optimization

p′￼
p′￼pp

g′￼
g′￼gg

LightSeq/LightSeq2 Optimization Overview

x

x

Dropout

x

x

x

Dropout

Computational
Graph

Optimizations

g1 g′￼1

p′￼1p1

Copy
FP32

+
Copy
FP16

g

p

fp32+Optimize Optimize

∇x

∇x

∇w ×

Layer
Norm

∇x

R
euse M

em
ory

Trainer Speedup Memory
Management

σ(x)

μ(x)

Mean

x
x

μ(x2)

Dependent
Reduction
Rewriting

Optimize

Var

x

μ(x)

Mean
Square Mean

σ(x)

Idea1: Kernel Fusion

3~5μs

=4000 cycles

Bias adding & Dropout & Residual

Y = Y ⋅ Wout

Reshape Y

Y = S ⋅ V

Dropout

Softmax

S = Q ⋅ KT / dK

Bias adding & Reshape Q, K, V

Q, K, V = Y ⋅ (WQ, WK, WV)

LayerNorm

Embedding LayerNorm

Y = Y ⋅ W1

Bias adding & ReLU & Dropout

Y = Y ⋅ W2

Bias adding & Dropout & Residual

Softmax

Y = Y ⋅ Wemb

Cross Entropy

N Layers …

Accelerate non-GEMM Operators via Fusion

Self
Attention

FFN

Criterion

Custom Reduce

cuBLAS GEMM

Custom Elementwise

Fused Embedding Forward Operator

w

Ew

Lookup

E

× xs +

p

Pp

Lookup

P

x

Dropout

y

Mask

Position

Embedding

Table
Word

Embedding

Table

Word Position

Scale

(Constant)

Fuse

w

Dropout(s ⋅ Ew + Pp)

E

s p

P

yMask

y = Dropout(s ⋅ Ew + Pp)

Less IO for intermediate results
Less Kernel launch overhead

5 cuda kernel launches 1 cuda kernel launch

Code Example: Embedding Forward

Word Embedding

Lookup

Positional Embedding

Lookup

Scale

Dropout mask

Apply dropout

https://github.com/bytedance/lightseq/blob/master/lightseq/csrc/kernels/cuda/embedding_kernels.cu

Fused Embedding Backward Operator

w

∇Ew

Reduce
Sum

∇E

×s

∇x

⊙

∇y

Mask

w

∇E

s

∇y

Mask
 Mask

& AtomicAdd

s ⋅ ∇y
⊙

Aggregate
Gradients of
same words

Fuse

∇E = ReduceSum(s ⋅ ∇y ⊙ Mask)

3 cuda kernel
launches

1 cuda kernel
launch

Code Example: Embedding Backward

Gradient clipping

Gradient accumulation

Dropout mask

Scale

Reduce sum

https://github.com/bytedance/lightseq/blob/master/lightseq/csrc/kernels/cuda/embedding_kernels.cu

Fused Criterion Operator

q

x

ℒ

ℒ = − ∑
i

pi log(qi)

p

Forward

Softmax

Log &
Inner
Prod

Fusion

Smoothed
One Hot

(Constant) ∇x

q p+

Backward

∇x = q − pWith some calculations:
element-wise operator

Fused Criterion Operator
With some calculations:
element-wise operator

Smoothed one-hot ground truth

Softmax output

α: smoothing parameter, 0< α < 1

V: vocabulary size, length of p, q

Gradient of Softmax

When i is equal to ground truth token index k:

Otherwise

Therefore

Layer-Batched Cross Attention

Batch×
Encoder

x

Decoder Layer

Decoder Layer

Decoder Layer

×

WL W2

×

W1

×

…

…

Original

Encoder

x

Decoder Layer

Decoder Layer

Decoder Layer

× …

[W1, …, WL]

Split

…
y1

yL

LightSeq2

One Big
GEMM

Idea 2: Reduce synchronization

Rewrite Reduction: LayerNorm Forward

σ(x)

μ(x)

Mean

x

Var

σ(x) =
1
N ∑

i
(xi − μ(x)i)2

x

μ(x2)

x

μ(x)

Mean
Square Mean

σ(x)

σ(x) = μ(x2) − μ(x)2

Rewrite

Two thread
synchronizations

One thread
synchronization

storage: FP16

Faster IO

Calculation: FP32

yi = wi
xi − μ(x)

σ(x)
+ biLayerNorm: rescales input for stability

Mean

Standard dev

Rewrite Reduction: LayerNorm Backward

α =
[xi − μ(x)]μ(x) − σ(x)

mσ(x)3

∇xi =
wi ∇yi

σ(x)
+ α ⋅ ∑

j

wj ∇yj + β ⋅ ∑
j

wj ∇yjxj

where

β =
μ(x) − xi

mσ(x)3

x

w
Inner
Prod

∇y

Inner
Prod

∑ wj ∇yj ∑ wjxj ∇yjσ(x)

μ(x)

Element
-wise OP

∇x

One thread
synchronization

You will implement LayerNorm in
assignment3!

Before:

Rearrange:

Z

x*Max x

Add &
SumExp

y

Exp &
Divide

yi =
exi

∑ exj

Rewrite Reduction: Softmax Forward

Two thread
synchronizations

Z = ∑
i

exi−x*

{headskeys

queries Softmax

row-wise normalization

Two reduce:

Costly!

Rewrite Reduction: Softmax Forward

Two thread
synchronizations

Z = ∑
i

exi−x*

Parameters (e.g. # of blocks, warps per block)
are shape dependent for maximal speedup

{headskeys

queries Softmax

row-wise normalization

Z

x*Max x

Add &
SumExp

y

Exp &
Divide

yi =
exi

∑ exj

… …

Row1 Row2

column ≤ 32 …
Threads 2 … 321 31 2 … 321 31

And Other Shapes …

You will implement Softmax in assignment3!

Code Example: Softmax Forward

Parameters tuning by using templates

https://github.com/bytedance/lightseq/blob/master/lightseq/csrc/kernels/cuda/softmax_kernels.cu

Code Example: Softmax Forward

Parameters tuning by using templates

Then call with parameters in launch

https://github.com/bytedance/lightseq/blob/master/lightseq/csrc/kernels/cuda/softmax_kernels.cu

16 32→
copy

16 32←
copy

g′￼1 g′￼2 g′￼3

p′￼1 p′￼2 p′￼3

Model Trainer

backward

& forward

(FP16)

g1 g2 g3

Gradients (FP16)

p1 p2 p3

Parameters (FP16)

Update

(FP32)

Original

Model

backward

& forward

(FP16)

link
workspaceg1 g2 g3

Gradients (FP16)

FP16

update

link
workspacep1 p2 p3

Parameters (FP16)

Trainer

LightSeq2

Calculation Precision: FP32

Storage Precision: FP16

Accelerated Mixed-Precision Update

Continuous space. Only one kernel launch

Dotted lines:

no actual memory storage

∇out

∇Y = ∇Dropout(∇out)

∇Z = ∇Y𝖳Wout

∇Y = Reshape(∇Z)

∇S = ∇YV𝖳, ∇V = S𝖳 ∇Y

∇Y

∇in

∇Q

∇Q

∇K

∇K

∇S

∇S

∇S

∇K̃

∇Q̃

∇Q̃

∇Ṽ

∇Ṽ

∇V ∇K̃

∇S = ∇Dropout(∇S)

∇S = ∇Softmax(∇S)

∇K = Q𝖳 ∇S, ∇Q = ∇S𝖳K

∇Q̃, ∇K̃, ∇Ṽ = Reshape(∇Q, ∇K, ∇V)

∇Y = ∇Q̃𝖳WQ + ∇K̃𝖳WK + ∇Ṽ𝖳WV

∇in = ∇LayerNorm(∇Y) + ∇out

∇in

Memory Management: Self Attention Backward Example
B : batch size
L : sequence length
H : hidden units

B × L × H

∇Y ∇out

∇Y ∇Z B × L × H, ∇out : not used again, reuse its memory

∇Z∇Y

∇Y ∇V ∇S attentions : B × L2 × H

}Bottleneck

BLH max{BL2N, 3BLH}BLHBLH

Least
Memory

Allocation

B × L × H, reuse memory for ∇Y

Summary for Accelerating Transformer Training

Efficient Parameter Update
 Memory ManagementHigh performance Kernels
for Forward and Backward

∇x ∇yDropout gp fp32+

∇z∇y ×Layer
Norm∇x

Reuse Memory

Kernel Fusion: merge kernels other than matmul

Algebraic Transformation: reduce sync

Mix-precision calculation (use half precision whenever possible)

Memory reuse (dependent on architecture)

key
techniques

Fast Inference for Transformer

NAACL 2021
LightSeq: A High Performance Inference Library for Transformers
Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan Wang, Lei Li

TurboTransformers: An Efficient GPU Serving System For
Transformer Models
Jiarui Fang, Yang Yu, Chengduo Zhao, Jie Zhou PPoPP 2021

argmax_y P(Y|X)
1. start with empty S

2. at each step, keep k best partial sequences

3. expand them with one more forward generation

4. collect new partial results and keep top-k

Inference: Beam Search

33

1.compute next token log probability
log_token_prob = tf.nn.log_softmax(logit) # [batch_size, beam_size, vocab_size]
log_seq_prob += log_token_prob # [batch_size, beam_size, vocab_size]
log_seq_prob = tf.reshape(log_seq_prob, [-1, beam_size * vocab_size])
2. compute the top k sequence probability for each batch sequence
topk_log_probs, topk_indices = tf.nn.top_k(log_seq_prob, k=K)
3. refresh the cache (decoder key and values) based on beam id
refresh_cache(cache, topk_indices)

Code Example

34

Hierarchical Auto Regressive Search for decoding

• Two calculations are needed in one step of beam search:

• Compute the conditional probability of each token in vocab using Softmax

• Select the top- beams by sequential probability.

• need sorting k*V elements!

• retrieve and re-rank to reduce complexity

k

Retrieve
• Divide logits into groups.

• Calculate the maximum of group , denoted as
, marked red

• Calculate the minimum of in each beam,
denoted as rough top- th logit .

• Select logits larger than and write them into
GPU memory.

k

i
mi

mi
k ℛ

ℛ

Re-rank

• Re-rank on candidate logits

Example

• Original logits, with Beam size = 2 and Vocab size = 8.

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

Example

• For each beam, divide the eight logits into two groups.

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

Example

• Calculate the maximum of each group.

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

Example

• For each beam, calculate the minimum of each group’s maximum.

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

Example

• For each beam, select logits larger than the minimum in previous step.

2
1

4
3

2
7

4
4

3
1

5
5

1
8

2
6

Example

• For each beam, select logits larger than the minimum in previous step.

4
7

4 5
8

Example

• Re-rank only on five logits

4 4 5 7 8

Details in Implementation

•share tensor memory across layers

•mixed precision computation, mostly using FP16 for computation

•Using float4 and half2 to increase bandwidth

•No need to keep intermediate results and gradients during infernece, similar to
with torch.no_grad()

Python API

C++ Operator

CUDA Kernel
LightSeq2 Kernel

LightSeq Software Architecture

Softmax FW Softmax BW Dropout BW … cuBLAS CUB

Encoder Decoder SoftmaxEmbedding Trainer …

Python API

Encoder Decoder SoftmaxEmbedding Trainer …

LightSeq Model Zoo

Transformer BERT ViTGPT2 …

Model Translator

…

Internal APIs

3rd Party

Public APIs

API Example: HuggingFace BERT

from lightseq.training import LSTransformerEncoderLayer

config = LSTransformerEncoderLayer.get_config(
 model="bert-base",
 max_batch_tokens=4096,
 max_seq_len=512,
 fp16=True,
 local_rank=0)

ls_layer = LSTransformerEncoderLayer(config)

replace the 1st Hugging Face layer with LightSeq2
bert_model.layer[0] = ls_layer

Step 1: import LightSeq

Step 2: Config and define
your model/layer

Step 3: Replace
HuggingFace Layer

48

LightSeq + Fairseq Integration

lightseq-train DATA_SET \
 --task translation \
 --arch ls_transformer_wmt_en_de_big_t2t \
 --optimizer ls_adam \
 --criterion ls_label_smoothed_cross_entropy \
 --OTHER_PARAMS

• LightSeq can be seamlessly used with Fairseq
• Training: lightseq-train，using prefix ls_

49

LightSeq + Fairseq Integration

• LightSeq accelerated Transformer embedding / encoder / decoder、Adam
and cross entropy for Fairseq

• LightSeq is compatible with Fairseq cache and reorder
• LightSeq is compatible with Apex and DeepSpeed together with Fairseq。

deepspeed ds_fairseq.py DATA_SET \
 —-user-dir fs_modules \
 --deepspeed_config deepspeed_config.json \
 --task translation \
 --arch ls_transformer_wmt_en_de_big_t2t \
 --optimizer ls_adam \
 --criterion ls_label_smoothed_cross_entropy \
 --OTHER_PARAMS

GPU Occupation

• LightSeq greatly reduces the proportion of kernels other than GEMM.

Machine Translation Inference: 14x speedup

• LightSeq outperforms others in most cases, especially in large batch size.

GPT2 Inference: 6x speedup
• LightSeq outperforms others in most cases

Machine Translation Training: 1.4-3.5x Speedup

DataSet WMT14 English-German
Machine Translation

Model Transformer: 24 encoder layers
+ 24 decoder layers

Hardware 1 Worker with 8x A100

Baseline FairSeq (PyTorch) + Apex
(optimized operators)

Encoder Decoder

You and me are like the devil and holy water.
Number of people serving as mentors
For the Player who Refuses to be Played

Du und ich, wir sind wie der Teufel und das Weihwasser.
Die Anzahl von Personen, die als Mentoren dienen
Für den Spieler, der sich weigert ausgespielt zu werden.

Batched Samples as trainer %

Experiment with different batch sizes

Transformer Model

Machine Translation Training: 1.4-3.5x Speedup

V100: 1.4-2.8x

A100: 1.5-3.5x

A100 is more efficient in GEMM

Model Size Speedup

55

Visualization of Training on GPU

Fairseq: 457ms

LightSeq: 214ms

encoder fw decoder fw decoder bw encoder bw optimizeoutput projection

Image Classification: Vision Transformer (ViT)

Vision Transformer for Image classification from google AI blog

https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Image Classification: 1.2-1.7x Speedup

DataSet CIFAR-10

Model Vision Transformer (ViT)

Hardware 1 Worker with 8x V100

Baseline Hugging Face (PyTorch)

Encoder

Bird CarBall Building

Patches

Vit Base Vit Large

Batch Size (#Patches) Speedup

Paraphrase Identification: 1.28-1.44x Speedup

DataSet Microsoft Research Paraphrase Corpus

Model BERT

Hardware 1 Worker with 8x V100

Baseline Hugging Face (PyTorch)

DeepSpeed (Kernel Fusion)

Encoder

DifferentEquivalent

For those who got surgery alone,
median survival was 41 months.

Those who only had surgery
lived an average of 46 months.

1.28x}}1.44x

Library Criterion Embedding Trainer

✘ ✘ ✘

✔ ✔ ✔2

LightSeq2 vs DeepSpeed Major Differences

GPT2 Training: 1.6-1.9x Speedup

DataSet WikiText

Model GPT2

Hardware 1 Worker with 8x V100/A100

Baseline Hugging Face (PyTorch)

GPT2 Large trained on A100,
1.6-1.9x Speedup

GPT2 Large trained on V100,
1.7-1.8x Speedup

Would you please come

you please come here

Decoder

Training Speedup Breakdown

Time cost for each training stages

Operator Speedup

LayerNorm 4x

Softmax 2.5-3.4x

Dropout 1.1-2.5x

Trainer 2.3x

Operator Speedup

Task: WMT14 Engish German Machine Translation
(same for rest pages)

Fairseq Lightseq2

Scalability: 1.12-1.41x Speedup

Speedup on 1 to 5 workers,
each has 8x A100

Speedup of Models with
different layers

Training Memory Cost: 6G less

Transformer Base Transformer Large

Summary
We optimize the training process from 3 aspects

Efficient Parameter Update

via mixed precision

Memory ManagementHigh performance Kernels
for Forward and Backward

via Fusion & Algebra trick

∇x ∇yDropout gp fp32+

∇z∇y ×Layer
Norm∇x

Reuse Memory

Operators that can be reused in Other Networks:

Dropout, LayerNorm, Softmax, Cross Entropy

code is available at

https://github.com/bytedance/lightseq

https://github.com/bytedance/lightseq

Early Course Feedback
What do students agree?

• Code walkthroughs

• The topic and assignments of the course are relevant to the current trends in
the field.

• Assignments are closely related to what’s useful to job market.

• Good for student to help their research.

• The course is well-prepared. It starts from easy to hard.

• Slides and reading material are made available before class.

Early Course Feedback
Suggestions/Feedback

• Homework write-ups may need improved clarity on expectations, pseudo code,
examples, to help students do what is required.

• Releasing example solutions could help students grow between assignments.

• you may come to office hour to review code.

• Pace

• The individual classes are a bit dense.

• Lecture sometimes fast, while sometimes a bit slow.

• More Explanation about CUDA kernels

Reading for Next

• PyTorch Distributed: Experiences on Accelerating Data Parallel Training

• PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel

