

Transformer

Lei Li

Carnegie Mellon University

Language Technologies Institute

Recap

- Design of a Deep Learning Framework
 - o Tensorflow, a computation graph defined as dataflow
 - two stages: defining the computation graph and then executing the computation (with optimization)
 - Placeholder nodes for taking input
 - Variable nodes for storing parameters
 - Operation node, with input node and output for holding computed result

Today's Topic

- Implementing Transformer, the backbone of LLMs
 - Encoder-decoder architecture
 - Embedding
 - Multihead Attention and FFN, Decoder Self-Attention
 - Layernorm
- Training techniques and Performance of Transformer
- Code walkthrough

Type of Language Models

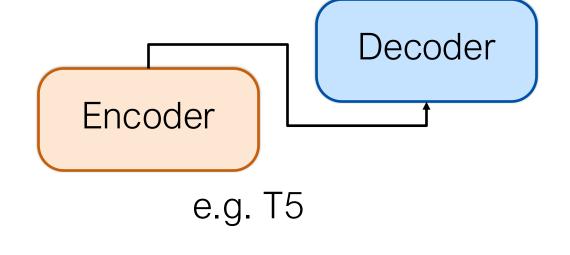
Encoder-only
Masked LM
Non-autoregressive

Encoder-decoder

Decoder-only Autoregressive

Encoder

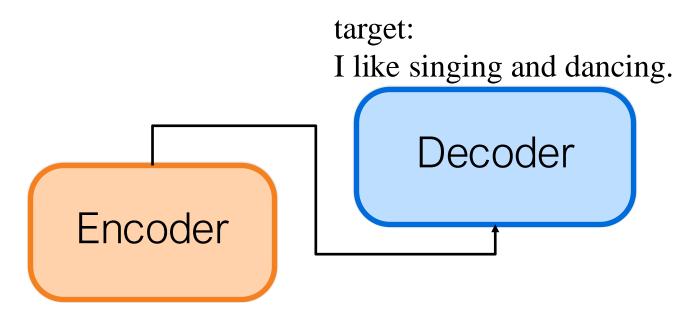
e.g. BERT RoBERTa ESM (for protein)



Decoder

e.g. GPT LLaMA ProGen (for protein)

Encoder-Decoder Paradigm



Source: 我喜欢唱歌和跳舞。

$$p_{\theta}(y|x) = \prod_{i} p(y_i|x, y_{1:i-1})$$

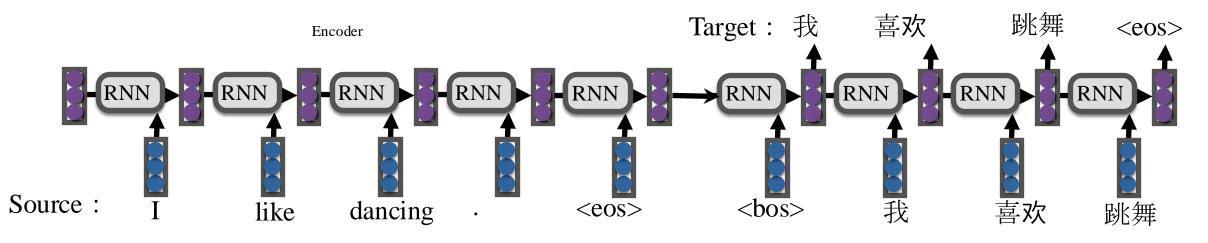
conditional prob. modeled by neural networks (Transformer)

Sequence to Sequence Learning

• Conditional text generation: directly learning a function mapping from source sequence to target sequence $n_0(y|x) = \Pi n(y_0|x,y_0,z_0;\theta)$

$$p_{\theta}(y|x) = \prod_{t} p(y_t|x, y_{1:t-1}; \theta)$$

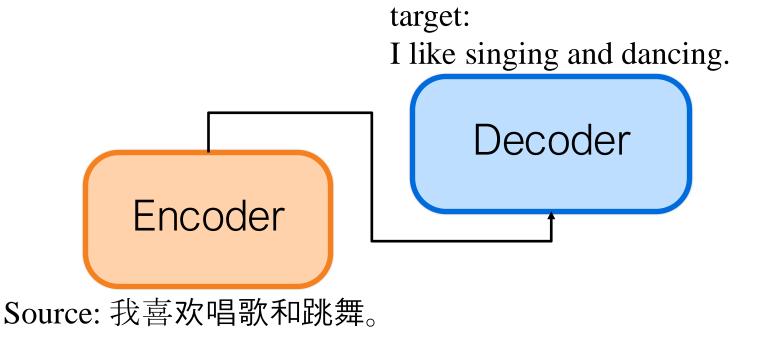
Previous encoder/decoder: LSTM or GRU



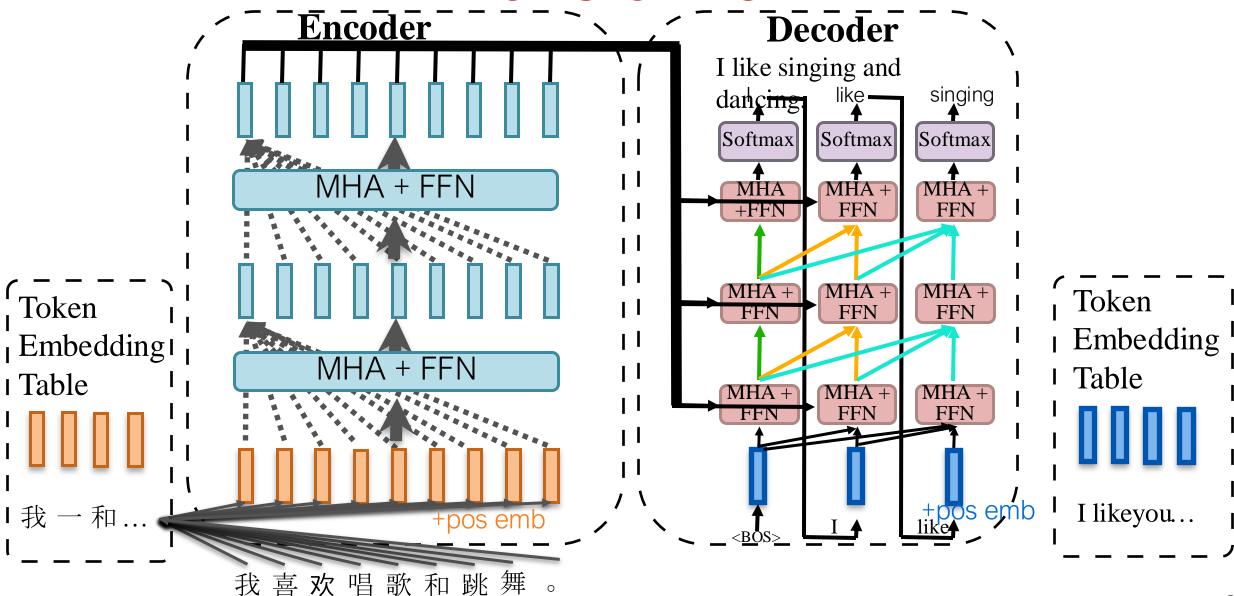
Motivation for a new Architecture

 Full context and parallel: use Attention in both encoder and decoder

no recurrent ==> concurrent encoding



Transformer

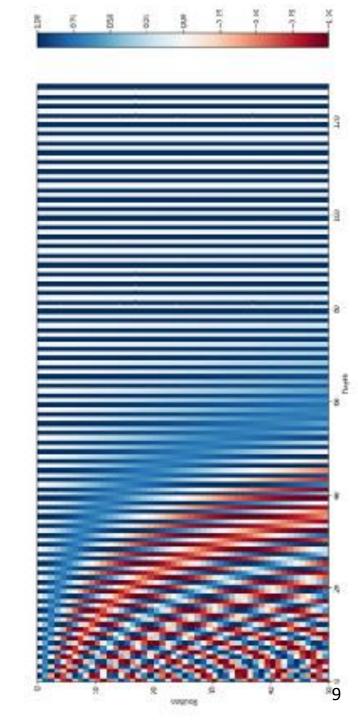


Embedding

- Token Embedding: (tokenization next lec.)
 - Shared (tied) input and output embedding from lookup table
- Positional Embedding:
 - to distinguish words in different position, Map position labels to embedding, dimension is same as Tok Emb, for t-th pos, i-th dim

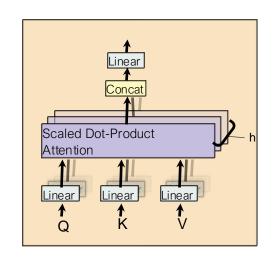
$$PE_{t,2i} = \sin(\frac{t}{1000^{2i/d}})$$

$$PE_{t,2i+1} = \cos(\frac{t}{1000^{2i/d}})$$



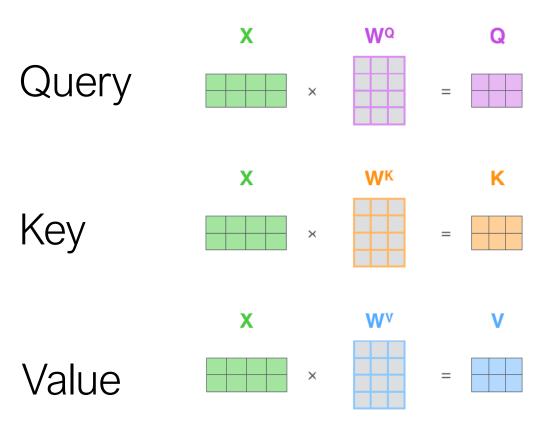
Multi-head Attention

- Instead of one vector for each token
- break into multiple heads
- each head perform attention $Head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$ MultiHead(Q, K, V) $= Concat(Head_1, Head_2, ..., Head_h)W^o$

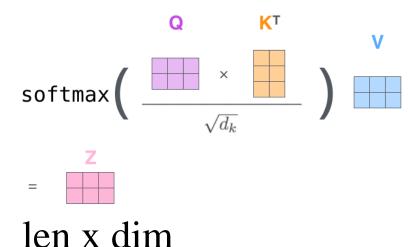


Multi-head Attention

X are input embeddings from previous layer (num of tok * dim)



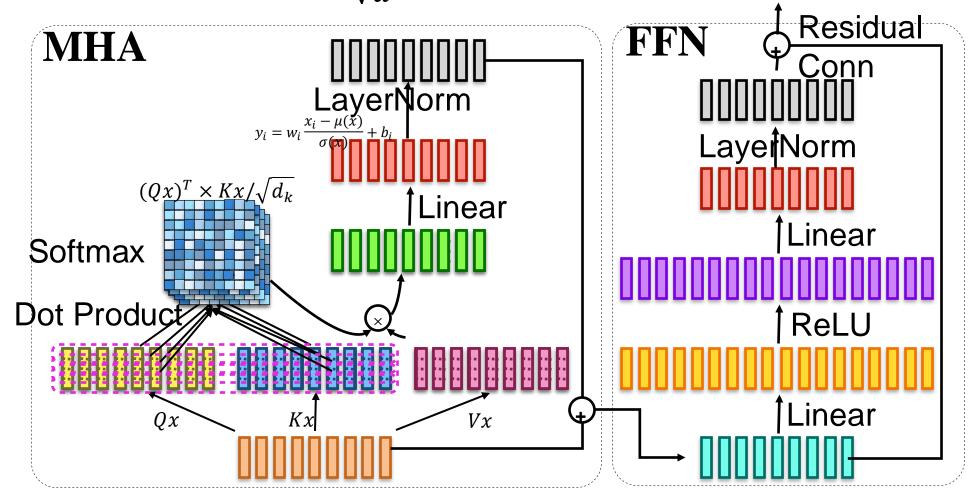
sent len x sent len



Q: why divided by sqrt(d)?

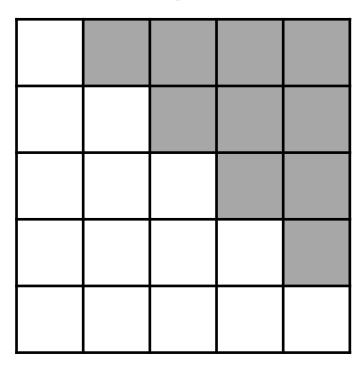
Multihead Attention and FFN

Attention $(Q, K, V, x) = \text{Softmax}(\frac{(Qx)^T Kx}{\sqrt{d}}) \cdot (Vx)^T$ FFN $(x) = max(0, x \cdot W_1 + b_1) \cdot W_2 + b_2$

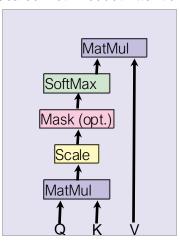


Decoder Self-Attention

Maskout right side before softmax (-inf)

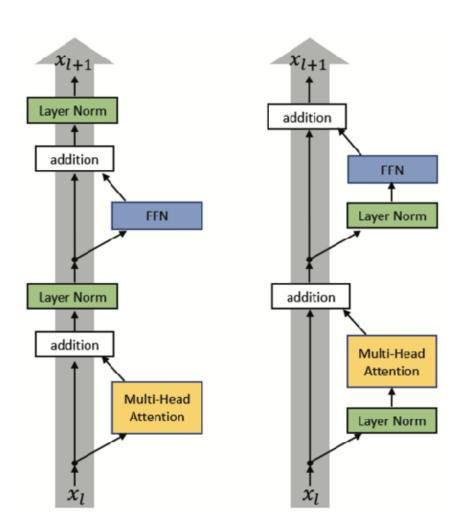


Scaled Dot-Product Attention



Residual Connection and Layer Normalization

- Residual Connection
- Make it zero mean and unit variance within layer
- Post-norm
- Pre-norm



Quiz 3

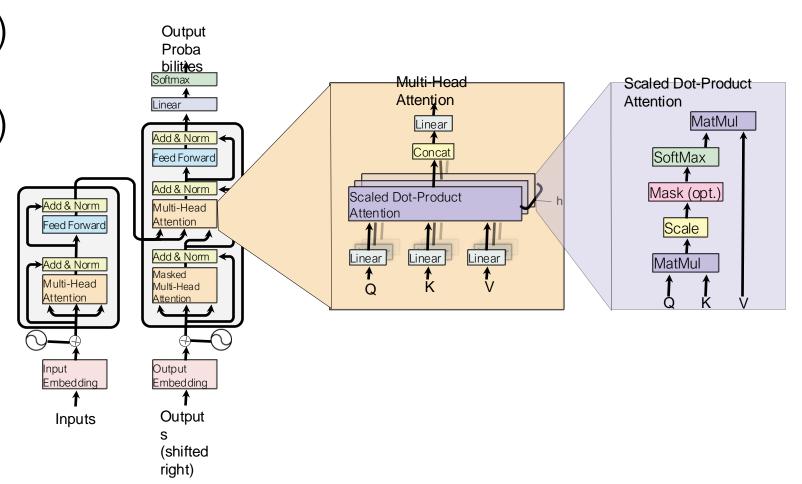
on Canvas

Today's Topic

- Implementing Transformer, the backbone of LLMs
 - Encoder-decoder architecture
 - Embedding
 - Multihead Attention and FFN, Decoder Self-Attention
 - Layernorm
- Training techniques and Performance of Transformer
 - Code walkthrough

Transformer in Original Paper

- C layers of encoder (=6)
- D layers of decoder (=6)
- Token Embedding: 512 (base), 1024 (large)
- FFN dim=2048



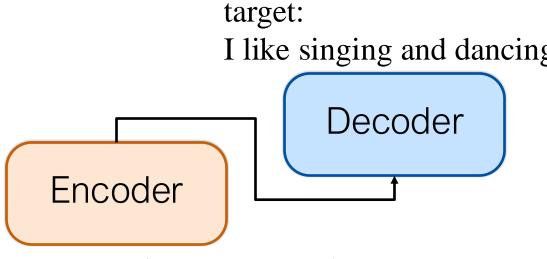
Training Transformer

$$P(Y|X) = \prod P(y_t|y_{< t}, x)$$

• Training loss: Cross-Entropy $l = -\sum \sum \log f_{\theta}(x_n, y_{n-1}, ..., y_{n-t-1})$

$$l = -\sum_{n} \sum_{t} \log f_{\theta}(x_n, y_{n,1}, ..., y_{n,t-1})$$

- Teacher-forcing during training.
- pretend to know groundtruth for prefix



Source: 我喜欢唱歌和跳舞。

Training Transformer for MT

- Dropout
 - Applied to before residual
 - o and to embedding, pos emb.
 - \circ p=0.1 ~ 0.3
- Label smoothing
 - 0.1 probability assigned to non-truth
- Vocabulary:
 - o En-De: 37K using BPE
 - o En-Fr: 32k word-piece (similar to BPE)

Label Smoothing

• Assume $y \in \mathbb{R}^n$ is the one-hot encoding of label

$$y_i = \begin{cases} 1 & \text{if belongs to class } i \\ 0 & \text{otherwise} \end{cases}$$

- Approximating 0/1 values with softmax is hard

• The smoothed version
$$y_i = \begin{cases} 1 - \epsilon & \text{if belongs to class } i \\ \epsilon/(n-1) & \text{otherwise} \end{cases}$$

o Commonly use $\epsilon = 0.1$

Training

Batch

- o group by approximate sentence length
- o still need shufflingHardware
- o one machine with 8 GPUs (in 2017 paper)
- o base model: 100k steps (12 hours)
- o large model: 300k steps (3.5 days)

Adam Optimizer

o increase learning rate during warmup, then decrease

$$\circ \eta = \frac{1}{\sqrt{d}} \min(\frac{1}{\sqrt{t}}, \frac{t}{\sqrt{t_0^3}})$$

ADAM

$$m_{t+1} = \beta_1 m_t - (1 - \beta_1) \nabla \ell(x_t)$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) (\nabla \ell(x_t))^2$$

$$\widehat{m}_{t+1} = \frac{m_{t+1}}{1 - \beta_1^{t+1}}$$

$$\widehat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta_2^{t+1}}$$

$$x_{t+1} = x_t - \frac{\eta}{\sqrt{\widehat{v}_{t+1}} + \epsilon} \widehat{m}_{t+1}$$

Model Average

- A single model obtained by averaging the last 5 checkpoints, which were written at 10-minute interval (base)
- decoding length: within source length + 50
 - o more on decoding in next lecture

Summary

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer (why each?)
 - o Positional Embedding (to distinguish tokens at different pos)
 - Multihead attention
 - Residual connection
 - o layer norm

Code Go-through

https://nlp.seas.harvard.edu/annotated-transformer/

Reading for Next Class

- Neural Machine Translation of Rare Words with Subword Units. Sennrich et al. 2016.
- SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. Kudo and Richardson. 2018