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Recap

Design of a Deep Learning Framework

o Tensorflow, a computation graph defined as dataflow

o two stages: defining the computation graph and then executing

the computation (with optimization)
» Placeholder nodes for taking input
= Variable nodes for storing parameters
» Operation node, with input node and output for holding computed result



Today's Topic
* Implementing Transformer, the backbone of LLMs
o Encoder-decoder architecture
o Embedding
o Multihead Attention and FFN, Decoder Self-Attention
o Layernorm

* Training technigues and Performance of Transformer

» Code walkthrough



Type of Language Models

Encoder-only Encoder-decoder Decoder-only
Masked LM Autoregressive

Non-autoregressive
[ Decoder ]
f [ Decoder j

[ Encoder ] [ Encoder ]

e.g. BERT e.g. 15 e.g. GPT

RoBERTa |F—)|—ag/|A : |
ESM (for protein) roGen (for protein)
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Encoder-Decoder Paradigm

target:
| like singing and dancing.

I
pe(VIx) = IIp(il%, Y1:i-1)
Encoder |

Source: F =R IEINFNTKEE,

conditional prob. modeled by
neural networks (Transformer)



Sequence to Seguence Learning

« Conditional text generation: directly learning a function
mapping from source sequence to target sequence

pPo(Y|x) = Elp(ytlx, Vi:t—1; 0)

* Previous encoder/decoder: LSTM or GRU
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Sutskever et al. Sequence to Sequence Learning with Neural Networks. 2014
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Motivation for a new Architecture

* Full context and parallel: use Attention in both encoder and
decoder

* N0 recurrent ==> concurrent encoding

target:
| like singing and dancing.

I

Encoder

Source: F =R IEFLNFOTKSE,




Transformer
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Embedding

« Token Embedding: (tokenization next lec.)

o Shared (tied) input and output embedding from
lookup table

 Positional Embedding:

o to distinguish words in different position, Map
position labels to embedding, dimension is same
as Tok Emb, for t-th pos, i-th dim

PE;,; = sin(

10002i/d)
t

PEi+1 = cos(

10002i/d)



Multi-head Attention

* |nstead of one vector for each token

* pbreak into multiple heads

- each head perform attention

Headl —_ Attenthn(Q mQ, KWLK, VWLV) lLinear | [Linear | Linetar'

MultiHead (Q, K, V)
= Concat(Head,, Head,, ..., Head; )W °



Query

Key

Value

Multi-head Attention

X are input embeddings from previous layer (num of tok * dim)

wa

Q

sent len x sent len
Q T

softmax(

len X dim

Q: why divided by sgrt(d)?

Alammar, The Illustrated Transformer 11



Multihead Attention and FFN

Attention(Q, K.V, x) = Softmax("22%) . (vx)"
ttention(Q, K, V, x) = Softmax NF X FFN(x) = max(0,x - W, + by) - W, + b,
MHA  panononnn FFN+ ""Re*sld*ual ******
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Decoder Self-Attention

* Maskout righ

' side before softmax (-inf)

Scaled Dot-Product Attention
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Residual Connection and Layer
Normalization

Residual Connection

Make It zero mean and unit
variance within layer

Post-norm

Pre-norm

X141

T

Layer Norm
L)

addition

ention
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« on Canvas

Quiz 3
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Today's Topic
* Implementing Transformer, the backbone of LLMs
o Encoder-decoder architecture
o Embedding
o Multihead Attention and FFN, Decoder Self-Attention
o Layernorm

= « Training technigues and Performance of Transformer

» Code walkthrough
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Transformer in Original Paper

C layers of encoder (=6)
D layers of decoder (=6)

Token Embedding: 512
(base), 1024 (large)
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Training Transformer

P(Y|X) =T1P(tly<e, x)

 Training loss: Cross-Entropy
B target:
[ = —Zglogfe (X Yn,10 - Ynjt—1) | like singing and dancing
n

. . . [ Decoder ]
» Teacher-forcing during training.
[ Encoder ] i

» pretend to know groundtruth for

| Source: =R PEFRFOTREE,
prefix
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Training Transformer for MT

* Dropout
o Applied to before residual
o and to embedding, pos emb.

0p=0.1~0.3

» Label smoothing
o 0.1 probability assigned to non-truth

* \Vocabulary:

o En-De: 37K using BPE
o En-Fr: 32k word-piece (similar to BPE)
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Label Smoothing

« Assume y € R" Is the one-hot encoding of label
yi =4

1 if belongs to classi
0 otherwise

« Approximating 0/1 values with softmax is hard

 The smoothed version

. 1-€ if belongs to class i
Vi = {e/(n —1) otherwise

o Commonly use ¢ =01
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Training

e Batch

o group by approximate sentence length

o still need shufflingHardware

o one machine with 8 GPUs (in 2017 paper)
o base model: 100k steps (12 hours)

o large model: 300k steps (3.5 days)

« Adam Optimizer

o Increase learning rate during warmup, then decrease
1 . t

1
on = Zmin(z, =)

5
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ADAM

Mipq = p1my — (1 — B)VE(x:)

Verr = Bave + (1 = B2) (VE(x))?
~ Meyq

Mey1 = 1 — t+1
1

~  _ Vtt1

Ve+1 = 1 — t+1
2

N ~
Xt+1 = Xt — \/A— N Mtiq
Vt+1 T €




Model Average

* A single model obtained by averaging the last 5
checkpoints, which were written at 10-minute interval
(base)

* decoding length: within source length + 50
o more on decoding Iin next lecture
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Summary

« Sequence-to-sequence encoder-decoder framework for
conditional generation, including Machine Translation

« Key components in Transformer (why each?)

o Positional Embedding (to distinguish tokens at different pos)
o Multihead attention

o Residual connection

o layer norm




Code Go-through

https://nlp.seas.harvard.edu/annotated-transformer/
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Reading for Next Class

 Neural Machine Translation of Rare Words with Subword
Units. Sennrich et al. 2016.

« SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text
Processing. Kudo and Richardson. 2018
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