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• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

2

Recap
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• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, 

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow
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Today’s Topic



• expressive to specify any neural networks

o support future custom operators/layers

• productive for ML engineers

o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation 

manually)

• efficient in large-scale training and inference

o automatically scale to data and model size

o automatic hardware acceleration
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Deep Learning Frameworks (also for LLMs)



• Formulate machine learning computation using data flow 

graphs (data moving around a computation graph)

• TensorFlow is an interface for expressing machine learning 

algorithms and an implementation for executing such 

algorithms

• PyTorch is a programming framework for tensor 

computation, deep learning, and auto differentiation
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Deep Learning Programming Framework
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Aspect PyTorch TensorFlow JAX NumPy

Primary Use Deep learning Deep learning
numerical and 

ML computing

numerical 

computing

Programming 

Paradigm

Dynamic (eager 

execution)

Static (Graph 

mode, or Eager)

Functional 

transformations
Procedural

Autograd
dynamic comp 

graph
static comp graph

Functional-based 

with grad/jit
Not available

Hardware 

Support
CPU, GPU, TPU CPU, GPU, TPU CPU, GPU, TPU CPU only

Ease of Use Pythonic
a bit learning 

curve

Pythonic and 

functional

Very easy, native 

python

Ecosystem
PyTorch Lightning, 

TorchVision

TensorBoard, 

TensorFlow 

Extended

integrates with 

NumPy
NA

Parallelism
Multi-GPU with 

DataParallel or DDP

Multi-GPU/TPU 

via tf.distribute

Multi-GPU/TPU 

via pmap
No parallelism



• Key idea: express a numeric computation as a computation 

graph

o following what we described in last lecture

• Graph nodes are operations with any number of inputs and 

outputs

• Graph edges are tensors which flow between nodes

o tensor: multidimensional array
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TensorFlow



• A tensor is a multi-dimensional array. generalization to vector 

and matrix

tf.constant([[1, 2], [3, 4]])

is a 2x2 tensor with element type int32

tf.Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32) 
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Data as a Tensor

Pytorch: 

torch.tensor([[1., 2.], [3., 4.]])
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Computation Graph in Tensorflow

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)



• Variables are stateful nodes 

which output their current value. 

• State is retained across multiple 

executions of a graph

• mostly parameters
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Variable Node
ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

b = tf.Variable(tf.zeros((100,)))
tf.Variable(initial_value=None,   
  trainable=None,
  name=None)
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Placeholder Node (Tensorflow v1)

• Represent Inputs, Labels, …

• value is fed in at execution time

• No need to explicitly define 

Placeholder in Tensorflow v2

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

x = tf.placeholder(tf.float32, (1, 784))
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Mathematical Operations

tf.linalg.matmul(a, b): multiply two matrices

tf.math.add(a, b): Add elementwise

tf.nn.relu(a): Activate with elementwise 

rectified linear function
ReLu(x) = 

0, x <= 0

x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Pytorch:

torch.matmul(a, b)

torch.add(a, b)

torch.nn.ReLU(a)
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Running the Graph

CPU

GPU

In TF v1, to deploy graph with a 

session: a binding to a particular 

execution context (e.g. CPU, 

GPU)

with tf.Session() as s:

  …

  s.run() 



• Use placeholder for labels

• Build loss node using labels and prediction
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Defining Loss

prediction = tf.nn.softmax(...)  #Output of neural network

label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)



• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds 

optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto 

Differentiation (recall previous lecture)
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Gradient Computation
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)



• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, 

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow
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Today’s Topic



• All nodes return tensors

• How a node computes is indistinguishable to TensorFlow

• In TF v1: metaprogramming - constructing the graph for the 

real computation. No computation occurs yet! 

• TF v2 has eager mode, the computation is applied 

immediately (essentially constructing the graph and apply 

the computation)
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Core TensorFlow Constructs



• Dataflow graphs of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders, 

essentially constructing the computation graph

2. Executes optimized version of program on set of available 

devices
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Design Principles



• Problem: support ML algos that contain conditional and 

iterative control flow, e.g.  

o Recurrent Neural Networks (RNNs) and LSTMs

o Autoregressive decoder

• Solution: Add conditional (if statement) and iterative (while 

loop) programming constructs
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Dynamic Flow Control



• Core in C++

o  Very low overhead

• Different front ends for specifying/driving the computation 

o Python and C++, easy to add more
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TensorFlow Architecture

http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf



• Semi-interpreted

• Call GPU kernel per primitive operation

• Can batch operations with custom C++

• Basic type-safety within dataflow graph 

(error at graph construction time)
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TensorFlow Implementation

https://www.tensorflow.org/extend/architecture
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Code Practice: Implement Computation 

Graph
https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/mini_tensorflow 

Please follow the instructions and fill in the code in 

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow.ipynb

The full code is provided in 

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow_full.ipynb 

https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb


• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, 

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow
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Today’s Topic



• Similar to MapReduce, Apache Hadoop, Apache Spark, …
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Tensorflow Execution Key Components
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Client



28

Master
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Computation Graph Partition



30

Computation Graph Partition
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Execution



• Determined by node: Queue nodes used for barriers

• Synchronous nearly as fast as asynchronous

• Default model is asynchronous
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Synchronous vs Asynchronous



• Assumptions: 

o Fine grain operations: “It is unlikely that tasks will fail so often that 

individual operations need fault tolerance” ;-)

o “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)

o save(): writes one or more tensors to a checkpoint file

o restore(): reads one or more tensors from a checkpoint file
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Fault Tolerance



34

Performance

• Single Node

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



• Distributed Throughput
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Performance

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



• Key Contributions

o  Programmability/abstraction

o  Accessibility / ease of use

• Deferred execution: 

1. Define program i.e., symbolic dataflow graph w/ placeholders, 

essentially constructing the computation graph

2. Executes (optimized) computation graph on set of available 

devices
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Summary

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016
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