
Deep Learning Framework

Design

Lei Li

• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

2

Recap

3

y=x1 + exp(1.5 * x1 + 2.0 * x2)
x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1
= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2
= 2.0

*

+

𝑥7
= 1

𝑥6

𝑥4

𝑥5

exp(.)

id

𝑥5→6 *

id

𝑤2*𝑥2

*

𝑥3
id

𝑤1*
𝑥1

𝑥1→3

*

+

Backward Computation Graph

• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”,

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow

4

Today’s Topic

• expressive to specify any neural networks

o support future custom operators/layers

• productive for ML engineers

o hide low-level details (no need to write cuda)

o automatic differentiation (no need to derive gradient calculation

manually)

• efficient in large-scale training and inference

o automatically scale to data and model size

o automatic hardware acceleration
5

Deep Learning Frameworks (also for LLMs)

• Formulate machine learning computation using data flow

graphs (data moving around a computation graph)

• TensorFlow is an interface for expressing machine learning

algorithms and an implementation for executing such

algorithms

• PyTorch is a programming framework for tensor

computation, deep learning, and auto differentiation

6

Deep Learning Programming Framework

7

Aspect PyTorch TensorFlow JAX NumPy

Primary Use Deep learning Deep learning
numerical and

ML computing

numerical

computing

Programming

Paradigm

Dynamic (eager

execution)

Static (Graph

mode, or Eager)

Functional

transformations
Procedural

Autograd
dynamic comp

graph
static comp graph

Functional-based

with grad/jit
Not available

Hardware

Support
CPU, GPU, TPU CPU, GPU, TPU CPU, GPU, TPU CPU only

Ease of Use Pythonic
a bit learning

curve

Pythonic and

functional

Very easy, native

python

Ecosystem
PyTorch Lightning,

TorchVision

TensorBoard,

TensorFlow

Extended

integrates with

NumPy
NA

Parallelism
Multi-GPU with

DataParallel or DDP

Multi-GPU/TPU

via tf.distribute

Multi-GPU/TPU

via pmap
No parallelism

• Key idea: express a numeric computation as a computation

graph

o following what we described in last lecture

• Graph nodes are operations with any number of inputs and

outputs

• Graph edges are tensors which flow between nodes

o tensor: multidimensional array

8

TensorFlow

• A tensor is a multi-dimensional array. generalization to vector

and matrix

tf.constant([[1, 2], [3, 4]])

is a 2x2 tensor with element type int32

tf.Tensor([[2 3] [4 5]], shape=(2, 2), dtype=int32)

9

Data as a Tensor

Pytorch:

torch.tensor([[1., 2.], [3., 4.]])

10

Computation Graph in Tensorflow

import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))

W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

• Variables are stateful nodes

which output their current value.

• State is retained across multiple

executions of a graph

• mostly parameters
11

Variable Node
ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

b = tf.Variable(tf.zeros((100,)))
tf.Variable(initial_value=None,
 trainable=None,
 name=None)

12

Placeholder Node (Tensorflow v1)

• Represent Inputs, Labels, …

• value is fed in at execution time

• No need to explicitly define

Placeholder in Tensorflow v2

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

x = tf.placeholder(tf.float32, (1, 784))

13

Mathematical Operations

tf.linalg.matmul(a, b): multiply two matrices

tf.math.add(a, b): Add elementwise

tf.nn.relu(a): Activate with elementwise

rectified linear function
ReLu(x) =

0, x <= 0

x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Pytorch:

torch.matmul(a, b)

torch.add(a, b)

torch.nn.ReLU(a)

14

Running the Graph

CPU

GPU

In TF v1, to deploy graph with a

session: a binding to a particular

execution context (e.g. CPU,

GPU)

with tf.Session() as s:

 …

 s.run()

• Use placeholder for labels

• Build loss node using labels and prediction

16

Defining Loss

prediction = tf.nn.softmax(...) #Output of neural network

label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds

optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto

Differentiation (recall previous lecture)

17

Gradient Computation
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”,

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow

18

Today’s Topic

• All nodes return tensors

• How a node computes is indistinguishable to TensorFlow

• In TF v1: metaprogramming - constructing the graph for the

real computation. No computation occurs yet!

• TF v2 has eager mode, the computation is applied

immediately (essentially constructing the graph and apply

the computation)

19

Core TensorFlow Constructs

• Dataflow graphs of primitive operators

• Deferred execution (two phases)

1. Define program i.e., symbolic dataflow graph w/ placeholders,

essentially constructing the computation graph

2. Executes optimized version of program on set of available

devices

20

Design Principles

• Problem: support ML algos that contain conditional and

iterative control flow, e.g.

o Recurrent Neural Networks (RNNs) and LSTMs

o Autoregressive decoder

• Solution: Add conditional (if statement) and iterative (while

loop) programming constructs

21

Dynamic Flow Control

• Core in C++

o Very low overhead

• Different front ends for specifying/driving the computation

o Python and C++, easy to add more

22

TensorFlow Architecture

http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

• Semi-interpreted

• Call GPU kernel per primitive operation

• Can batch operations with custom C++

• Basic type-safety within dataflow graph

(error at graph construction time)

23

TensorFlow Implementation

https://www.tensorflow.org/extend/architecture

24

Code Practice: Implement Computation

Graph
https://github.com/llmsystem/llmsys_code_examples/tree/mai

n/mini_tensorflow

Please follow the instructions and fill in the code in

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow.ipynb

The full code is provided in

https://github.com/llmsystem/llmsys_code_examples/blob/mai

n/mini_tensorflow/mini_tensorflow_full.ipynb

https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/tree/main/mini_tensorflow
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/mini_tensorflow/mini_tensorflow_full.ipynb

• How to design a deep learning framework

o Design ideas in TensorFlow
▪ Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”,

OSDI 2016

o Basic Graph node types in Tensorflow/Pytorch

oOverall design principles

• Hands-on practice to implement a mini-tensorflow

• Execution in Tensorflow

25

Today’s Topic

• Similar to MapReduce, Apache Hadoop, Apache Spark, …

26

Tensorflow Execution Key Components

27

Client

28

Master

29

Computation Graph Partition

30

Computation Graph Partition

31

Execution

• Determined by node: Queue nodes used for barriers

• Synchronous nearly as fast as asynchronous

• Default model is asynchronous

32

Synchronous vs Asynchronous

• Assumptions:

o Fine grain operations: “It is unlikely that tasks will fail so often that

individual operations need fault tolerance” ;-)

o “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)

o save(): writes one or more tensors to a checkpoint file

o restore(): reads one or more tensors from a checkpoint file

33

Fault Tolerance

34

Performance

• Single Node

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

• Distributed Throughput

35

Performance

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

• Key Contributions

o Programmability/abstraction

o Accessibility / ease of use

• Deferred execution:

1. Define program i.e., symbolic dataflow graph w/ placeholders,

essentially constructing the computation graph

2. Executes (optimized) computation graph on set of available

devices

36

Summary

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

	Slide 1: Deep Learning Framework Design
	Slide 2: Recap
	Slide 3
	Slide 4: Today’s Topic
	Slide 5: Deep Learning Frameworks (also for LLMs)
	Slide 6: Deep Learning Programming Framework
	Slide 7
	Slide 8: TensorFlow
	Slide 9: Data as a Tensor
	Slide 10: Computation Graph in Tensorflow
	Slide 11: Variable Node
	Slide 12: Placeholder Node (Tensorflow v1)
	Slide 13: Mathematical Operations
	Slide 14: Running the Graph
	Slide 16: Defining Loss
	Slide 17: Gradient Computation
	Slide 18: Today’s Topic
	Slide 19: Core TensorFlow Constructs
	Slide 20: Design Principles
	Slide 21: Dynamic Flow Control
	Slide 22: TensorFlow Architecture
	Slide 23: TensorFlow Implementation
	Slide 24: Code Practice: Implement Computation Graph
	Slide 25: Today’s Topic
	Slide 26: Tensorflow Execution Key Components
	Slide 27: Client
	Slide 28: Master
	Slide 29: Computation Graph Partition
	Slide 30: Computation Graph Partition
	Slide 31: Execution
	Slide 32: Synchronous vs Asynchronous
	Slide 33: Fault Tolerance
	Slide 34: Performance
	Slide 35: Performance
	Slide 36: Summary

