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• Learning algorithm for Neural Network
o stochastic gradient descent

• Computation Graph
o topological traversal along the DAG

• Auto Differentiation
o building backward computation graph
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Recap



• How to design a deep learning framework
oDesign ideas in TensorFlow

• Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, 
OSDI 2016
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Today’s Topic



• Deep learning already claiming big successes

• Huge need for high-productivity tools for developing 
machine learning solutions for various applications

• Instead of writing cuda and differentiation code for each 
specific model
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Need for DL Programming System



• Open source library for machine learning computation using 
data flow graphs

• TensorFlow is an interface for expressing machine learning 
algorithms, and an implementation for executing such 
algorithms

• PyTorch is a programming framework for tensor 
computation, deep learning, and auto differentiation
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Deep Learning Programming Framework



• Key idea: express a numeric computation as a computation 
graph
o following what we described in last lecture

• Graph nodes are operations with any number of inputs and 
outputs

• Graph edges are tensors which flow between nodes
o tensor: multidimensional array
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TensorFlow
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Programming Model

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Computation graph in tensorflow



• Variables are stateful nodes 
which output their current value. 

• State is retained across multiple 
executions of a graph

• mostly parameters
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Variables

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)
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Placeholders

• Placeholders are nodes whose 
value is fed in at execution time

• Inputs, Labels, …

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)
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Mathematical Operations

MatMul: Multiply two matrices
Add: Add elementwise
ReLU: Activate with elementwise 
rectified linear function

ReLu(x) = 
0, x <= 0
x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)
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Programming the Graph
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -
1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)
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Running the Graph

CPU

GPU

Deploy graph with a session: a 
binding to a particular 
execution context (e.g. CPU, 
GPU)
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• Use placeholder for labels

• Build loss node using labels and prediction
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Defining Loss

prediction = tf.nn.softmax(...)  #Output of neural 
network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * 
tf.log(prediction), axis=1)



• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds 
optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto 
Differentiation (recall previous lecture)
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Gradient Computation
train_step = 
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)



• All nodes return tensors, or higher-dimensional matrices

• How a node computes is indistinguishable to TensorFlow

• You are metaprogramming - constructing the graph for the 
real computation. No computation occurs yet!
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Core TensorFlow Constructs
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Implementing Graph Nodes



• Dataflow graphs of primitive operators

• Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/ placeholders
2. Executes optimized version of program on set of available 
devices

18

Design Principles



• Problem: support ML algos that contain conditional and 
iterative control flow, e.g.  
o Recurrent Neural Networks (RNNs) and LSTMs
o Autoregressive decoder

• Solution: Add conditional (if statement) and iterative (while 
loop) programming constructs
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Dynamic Flow Control



• Core in C++
o  Very low overhead

• Different front ends for specifying/driving the computation 
o Python and C++, easy to add more
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TensorFlow Architecture

http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf



• Semi-interpreted

• Call to kernel per primitive operation

• Can batch operations with custom C++

• Basic type-safety within dataflow graph 
(error at graph construction time)
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TensorFlow Implementation

https://www.tensorflow.org/extend/architecture



• Similar to MapReduce, Apache Hadoop, Apache Spark, …
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Key Components
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Client
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Master
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Computation Graph Partition
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Computation Graph Partition
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Execution



• Determined by node: Queue nodes used for barriers

• Synchronous nearly as fast as asynchronous

• Default model is asynchronous
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Synchronous vs Asynchronous



• Assumptions: 
o Fine grain operations: “It is unlikely that tasks will fail so often that 

individual operations need fault tolerance” ;-)
o “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)
o save(): writes one or more tensors to a checkpoint file
o restore(): reads one or more tensors from a checkpoint file
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Fault Tolerance
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Performance
• Single Node

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



• Distributed Throughput
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Performance

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



• Key Contributions
o  Programmability
o  Accessibility / ease of use
o  Richness of Libraries
o  Ready-made community
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Summary

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



https://github.com/llmsystem/llmsys_code_examples/blob/m
ain/Minitorch_Public_Notebook.ipynb 
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MiniTorch Code Explanation

https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb


• Attention is all you need. 2017
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Reading for Next Class


