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Recap

e | earning algorithm for Neural Network
o stochastic gradient descent

e Computation Graph
o topological traversal along the DAG

e Auto Differentiation
o building backward computation graph



Today's Topic

—> e How to design a deep learning framework

o Design ideas in TensorFlow

e Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”,
OSDI 2016



Need for DL Programming System
e Deep learning already claiming big successes

e Huge need for high-productivity tools for developing
machine learning solutions for various applications

¢ |nstead of writing cuda and differentiation code for each
specific model



Deep Learning Programming Framework

e Open source library for machine learning computation using
data flow graphs

e [ensorklow Is an interface for expressing machine learning
algorithms, and an implementation for executing such
algorithms

e Pyforch is a programming framework for tensor
computation, deep learning, and auto differentiation



TensorFlow

o Key idea: express a numeric computation as a computation
graph
o following what we described in last lecture

e Graph nodes are operations with any number of inputs and
outputs

e Graph edges are tensors which flow between nodes
o tensor: multidimensional array



Programming Model

Computation graph in tensorflow
P JIap ( ReLU )
h = RELU(Wx + b) ( Achd )
(MatMul)




Variables

h = RELU(Wx + b) ( e )
e \/ariables are stateful nodes ( Add )

which output their current value.

e State is retained across multiple (MatMul)

executions of a graph >/' "\(
e mostly parameters




Placeholders

h = RELU(Wx + b) ( ReT'-U )

 Placeholders are nodes whose (_Add ]
value Is fed In at execution time

[MatMuD

* |nputs, Labels, ... > w




Mathematical Operations

h = RELUWx + b)

MatMul: Multiply two matrices
Add: Add elementwise
Rel U: Activate with elementwise

rectified linear function

0, x<=0
x, x>0

RelLu(x) = -

( ReLU )

f

(Add)

(MatMuD

@ %
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Programming the Graph

import tensorflow as tf
( ReLU )
b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), - T
1, 1)) ( Add )
x = tf.placeholder(tf.float32, (1, 784)) T
h = tf.nn.relutf.matmul(x, W) + b) (MatMul)
h=RELUWx + b) @( ‘}@




Running the Graph

Deploy graph with a session: a
binding to a particular
execution context (e.g. CPU,
GPU)

( RelLU )
A

( Add )

&
&

CPU

[\

GPU
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1L tmport tensorflow as tf

)

3 with tf.Session() as sess:

a tf.constant(15, name="a")
b tf.constant(5, name="b")

prod = tf.multiply(a, b, name="Multiply")
sum = tf.add(a, b, name="Add")

= tf.divide(prod, sum, name="Divide")

out sess.run(res)
print(out)




Defining Loss

e Use placeholder for labels

e Build loss node using labels and prediction

prediction = tf.nn.softmax(...) #Output of neural

network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label *
tf.log(prediction), axis=1)
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Gradient Computation

train_step =
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

e tf.train.GradientDescentOptimizer is an Optimizer object

e tf.train.GradientDescentOptimizer(Ir).minimize(cross_entropy) adds
optimization operation to computation graph

e TensorFlow graph nodes have attached gradient operations

e (Gradient with respect to parameters computed with Auto
Differentiation (recall previous lecture)
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Core TensorFlow Constructs

e All nodes return tensors, or higher-dimensional matrices

e How a node computes is indistinguishable to TensorFlow

® You are metaprogramming - constructing the graph for the
real computation. No computation occurs yet!
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Implementing Graph Nodes



Design Principles
e Dataflow graphs of primitive operators

e Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/ placeholders

2. Executes optimized version of program on set of available
devices
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Dynamic Flow Control

* Problem: support ML algos that contain conditional and
terative control flow, e.q.
o Recurrent Neural Networks (RNNs) and LSTMs
o Autoregressive decoder

e Solution: Add conditional (if statement) and iterative (while
loop) programming constructs
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TensorFlow Architecture

e Core in C++
o Very low overhead

e Different front ends for specifying/driving the computation
o Python and C++, easy to add more

Python front end
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TensorFlow Implementation

e Semi-interpreted
e Call to kernel per primitive operation
e Can batch operations with custom C++

e Basic type-safety within dataflow graph
(error at graph construction time)

Training libraries

Inference libs

Python client

C++ client | ...

C API

Distributed master

Dataflow executor

[Const] (Var] (MatMulJ [ConvZDJ [ReLU] [Queue]

Kernel implementations

RPC | |[RDMA] ...
Networking layer

Device layer

CPU||GPU| ...
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Key Components

e Similar to MapReduce, Apache Hadoop, Apache Spark, ...

Worker

/job:worker/task:0

Client Master

Worker

/job:ps/task:0




Client

Master

Worker

/job:worker/task:0

\ 4

Worker

/job:ps/task:0
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Client

RunStep()

Master

Worker

/job:worker/task:0

\ 4

Worker

/job:ps/task:0
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Computation Graph Partition

PS . Worker
I'/ i
RECV | SEND
/j\i EE;/\
i SEND | RECV ~
7 i ‘
S w b
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Computation Graph Partition

Client

RegisterGraph()

Master

RegisterGraph()

Worker

/job:worker/task:0

Worker

/job:ps/task:0

A
o/ \x

o
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Client

Execution

RunGraph()

Master

RunGraph()

Worker
. O *
/job:worker/task:0

O/ \
A X
RecvTensor RecvTensor
w, b y
Worker /
/iob:ps/task:0 +=
S| lw b
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Synchronous vs Asynchronous
e Determined by node: Queue nodes used for barriers
e Synchronous nearly as fast as asynchronous

e Default model is asynchronous
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Fault Tolerance

e Assumptions:

o Fine grain operations: “lt is unlikely that tasks will fail so often that
individual operations need fault tolerance” ;-)

o “Many learning algorithms do not require strong consistency”

e Solution: user-level checkpointing (provides 2 ops)
o save(): writes one or more tensors to a checkpoint file
o restore(): reads one or more tensors from a checkpoint file
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Performance

e Single Node
Training step time (ms)

Library AlexNet Overfeat OxfordNet GoogleNet
Caffe [38 324 823 1068 1935
Neon [58] 87 211 320 270
Torch [17 81 268 529 470
TensorFlow 31 279 540 445

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016



Performance

o Distributed Throughput

Images/second/worker
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Summary

e Key Contributions
o Programmability
o Accessibility / ease of use
o Richness of Libraries
o Ready-made community

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016
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MiniTorch Code Explanation

https://github.com/limsystem/limsys _code_examples/blob/m

ain/Minitorch_Public_Notebook.ipynb
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https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb

Reading for Next Class

e Attention is all you need. 2017
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