
11868 LLM Systems
Deep Learning Framework

Design
Lei Li

1

• Learning algorithm for Neural Network
o stochastic gradient descent

• Computation Graph
o topological traversal along the DAG

• Auto Differentiation
o building backward computation graph

2

Recap

• How to design a deep learning framework
oDesign ideas in TensorFlow

• Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”,
OSDI 2016

3

Today’s Topic

• Deep learning already claiming big successes

• Huge need for high-productivity tools for developing
machine learning solutions for various applications

• Instead of writing cuda and differentiation code for each
specific model

4

Need for DL Programming System

• Open source library for machine learning computation using
data flow graphs

• TensorFlow is an interface for expressing machine learning
algorithms, and an implementation for executing such
algorithms

• PyTorch is a programming framework for tensor
computation, deep learning, and auto differentiation

5

Deep Learning Programming Framework

• Key idea: express a numeric computation as a computation
graph
o following what we described in last lecture

• Graph nodes are operations with any number of inputs and
outputs

• Graph edges are tensors which flow between nodes
o tensor: multidimensional array

6

TensorFlow

7

Programming Model

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

Computation graph in tensorflow

• Variables are stateful nodes
which output their current value.

• State is retained across multiple
executions of a graph

• mostly parameters
8

Variables

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

9

Placeholders

• Placeholders are nodes whose
value is fed in at execution time

• Inputs, Labels, …

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

10

Mathematical Operations

MatMul: Multiply two matrices
Add: Add elementwise
ReLU: Activate with elementwise
rectified linear function

ReLu(x) =
0, x <= 0
x, x > 0

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

11

Programming the Graph
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -
1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

ℎ = 𝑅𝐸𝐿𝑈(𝑊𝑥 + 𝑏)

12

Running the Graph

CPU

GPU

Deploy graph with a session: a
binding to a particular
execution context (e.g. CPU,
GPU)

13

• Use placeholder for labels

• Build loss node using labels and prediction

14

Defining Loss

prediction = tf.nn.softmax(...) #Output of neural
network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label *
tf.log(prediction), axis=1)

• tf.train.GradientDescentOptimizer is an Optimizer object

• tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) adds
optimization operation to computation graph

• TensorFlow graph nodes have attached gradient operations

• Gradient with respect to parameters computed with Auto
Differentiation (recall previous lecture)

15

Gradient Computation
train_step =
tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

• All nodes return tensors, or higher-dimensional matrices

• How a node computes is indistinguishable to TensorFlow

• You are metaprogramming - constructing the graph for the
real computation. No computation occurs yet!

16

Core TensorFlow Constructs

17

Implementing Graph Nodes

• Dataflow graphs of primitive operators

• Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/ placeholders
2. Executes optimized version of program on set of available
devices

18

Design Principles

• Problem: support ML algos that contain conditional and
iterative control flow, e.g.
o Recurrent Neural Networks (RNNs) and LSTMs
o Autoregressive decoder

• Solution: Add conditional (if statement) and iterative (while
loop) programming constructs

19

Dynamic Flow Control

• Core in C++
o Very low overhead

• Different front ends for specifying/driving the computation
o Python and C++, easy to add more

20

TensorFlow Architecture

http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

• Semi-interpreted

• Call to kernel per primitive operation

• Can batch operations with custom C++

• Basic type-safety within dataflow graph
(error at graph construction time)

21

TensorFlow Implementation

https://www.tensorflow.org/extend/architecture

• Similar to MapReduce, Apache Hadoop, Apache Spark, …

22

Key Components

23

Client

24

Master

25

Computation Graph Partition

26

Computation Graph Partition

27

Execution

• Determined by node: Queue nodes used for barriers

• Synchronous nearly as fast as asynchronous

• Default model is asynchronous

28

Synchronous vs Asynchronous

• Assumptions:
o Fine grain operations: “It is unlikely that tasks will fail so often that

individual operations need fault tolerance” ;-)
o “Many learning algorithms do not require strong consistency”

• Solution: user-level checkpointing (provides 2 ops)
o save(): writes one or more tensors to a checkpoint file
o restore(): reads one or more tensors from a checkpoint file

29

Fault Tolerance

30

Performance
• Single Node

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

• Distributed Throughput

31

Performance

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

• Key Contributions
o Programmability
o Accessibility / ease of use
o Richness of Libraries
o Ready-made community

32

Summary

Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning”, OSDI 2016

https://github.com/llmsystem/llmsys_code_examples/blob/m
ain/Minitorch_Public_Notebook.ipynb

33

MiniTorch Code Explanation

https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb
https://github.com/llmsystem/llmsys_code_examples/blob/main/Minitorch_Public_Notebook.ipynb

• Attention is all you need. 2017

34

Reading for Next Class

