
11868 LLM Systems

Auto Differentiation

Lei Li

• GPU is composed of

o streaming processing units (SMs)
▪ each with four partitions of 32 cores

▪ shared L1 cache

omemory

o L2 cache: share with all SMs

• Threads organized in

o grid of thread blocks

o each block is divided into warps

running on one SM.
2

Recap

Grid GPU

Warp

1

Thread Block

Warp

1

Warp

2

Warp

3
Warp

4

SM

partition1

• Basic CUDA operations

omemory allocation

o data movement

o creating threads and running on SMs
▪ specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
▪ using building index variables to refer to the data

• Implementing parallel matrix operations on GPUs

o partition the data and computation and assign to threads

3

Recap

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

4

Today’s Topic

• Neural network layers

o Embedding (lookup table)

o Linear

o Relu

o Average pooling

o Softmax

5

A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

• 𝑥𝑛, 𝑦𝑛 are data and label pairs for training

• Cross entropy

ℒ(𝜃) =
1

𝑁
∑

𝑛=1

𝑁

− log𝑓(𝑥𝑛)𝑦𝑛

• Pytorch CrossEntropyLoss is implemented as

o Negative Likelihood on logits

6

Training Loss for Classification

loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward()

7

Today’s focus (using PyTorch Example)

how is backward implemented?

how does it work on any network?

• Given a training set of input-output pairs 𝐷
= {(𝑥𝑛, 𝑦𝑛)}𝑛=1

𝑁

o 𝑥𝑛 and 𝑦𝑛 may both be vectors

• To find the model parameters such that the model
produces the most accurate output for each
training input
o Or a close approximation of it

• Learning the parameter of a neural network is an
instance!
o The network architecture is given

8

The Learning Problem

𝑦

𝑿

• Consider a generic function minimization problem, where x is
unknown variable

min 𝑓(𝑥)
𝑥

 where 𝑓: ℝ𝑑 → ℝ

• Iterative update algorithm

𝑥𝑡+1 ← 𝑥𝑡 + Δ

• so that 𝑓(𝑥𝑡+1) ≪ 𝑓(𝑥𝑡)

• How to find Δ

9

Generic Iterative Algorithm

𝑓(𝑥𝑡 + Δ𝑥) ≈ 𝑓(𝑥𝑡) + Δ𝑥𝑇𝛻𝑓|𝑥𝑡

• To make Δ𝑥𝑇𝛻𝑓|𝑥𝑡
 smallest

o ⇒ Δ𝑥 in the opposite direction of 𝛻𝑓|𝑥𝑡
i.e.Δ𝑥 = −𝛻𝑓|𝑥𝑡

• Update rule: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓|𝑥𝑡

• 𝜂 is a hyper-parameter to control the learning rate

10

Gradient Descent

set learning rate eta.

1. set initial parameter 𝜃 ← 𝜃0

2. for epoch = 1 to maxEpoch or until converg:

3. for each batch in the data:

4. total_g = 0

5. for each data (x, y) in data batch:

6. compute error err(f(x; 𝜃) - y)

7. compute gradient 𝑔 =
𝜕err(𝜃)

𝜕𝜃

8. total_g += g

9. update 𝜃 = 𝜃 - eta * total_g / N
11

(Stochastic) Gradient Descent Algorithm

• Goal:
𝜕𝑙

𝜕𝑤𝑖

• Forward computation

• Backpropogation

12

How to compute the gradient for every

parameter in an “arbitrary network”?

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

13

Today’s Topic

• Calculations on a neural network can be defined using

computation graph

• Each node denotes a variable or an operation

• Directed edges to connect nodes, indicating the input

values for operations.

14

Computation Graph

𝑥1 ℎ2 ℎ3

𝑤1

*

relu(.)
ℎ4

𝑤2

*
𝑜5

𝑦1

CEloss

15

𝑥1

𝑥3

𝑥5

1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

2.0

*

+

f = x1 + exp(1.5 * x1 + 2.0 * x2)
Computation:

1. Topological sorting of all

nodes

2. Calculate the value for

each node given its input

x1= 3, x2=0.5

• Put all nodes into un-

processed queue.

• Repeatedly, find a node

without incoming edges from

un-processed nodes

o evaluate its value based on

operation

o remove the node from the

queue and add it to processed

queue
16

Topological Sort

𝑥1

𝑥3

𝑥5

1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

2.0

*

+

• Most autodiff systems, including Pytorch/Autograd, explicitly

construct the computation graph.

• TensorFlow provide mini-languages for building

computation graphs directly.

• Disadvantage: need to learn a totally new API.

• Autograd (JAX) instead builds them by tracing the forward

pass computation (similar to numpy).

17

Building Computation Graph

• Node class, with attributes

o value: the actual value computed on a particular set of inputs

o fun: the primitive operation defining the node

o args and kwargs: the arguments the op was called with

o parents: the parent Nodes

• More details in next lecture

18

Implementation

https://github.com/mattjj/autodidact

https://github.com/mattjj/autodidact

• Autograd’s NumPy module provides primitive ops which

look and feel like NumPy functions, but secretly build the

computation graph.

19

Wrapper around Numpy

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

o constructing the computation graph for calculating gradients

20

Today’s Topic

• To learn a neural network, we need gradient of loss function

w.r.t. parameters.

• Parameters are also variables, and represented as nodes in

the computation graph.

• Chain rule => backpropogation
𝑑𝑦(𝑧)

𝑑𝑥
=

𝑑𝑦(𝑧)

𝑑𝑧
∙

𝑑𝑧

𝑑𝑥

21

Gradient Calculation

22

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

23

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

𝑥7 = 1
𝑥6 = 1

𝑥5 =
𝜕𝑦

𝜕𝑥6
∙

𝜕𝑥6

𝜕𝑥5
= 𝑥6 ∙ exp(𝑥5)

𝑥4 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥4
= 𝑥5

𝑥3 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥3
= 𝑥5

𝑤2 =
𝜕𝑦

𝜕𝑥4
∙

𝜕𝑥4

𝜕𝑤2
= 𝑥4 ∙ 𝑥2

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

24

𝑦 𝑧

𝑥 ҧ𝑥 = ത𝑦 ∙
𝜕𝑦

𝜕𝑥
+ ҧ𝑧 ∙

𝜕𝑧

𝜕𝑥

…

Node with multiple outgoing edges

Jacobian

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

25

Partial derivatives for Vectors

row: keep y index, iter x index

col: keep x index, iter y index

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

• computing the partial derivative for each node (vector)

ҧ𝑥 = 𝐽𝑇 ത𝑦

26

Vector Jacobian Product

𝑦 = 𝑊𝑥
ҧ𝑥 = 𝑊𝑇 ത𝑦

27

Example

• For each primitive operation, we must specify VJPs for each

of its arguments.

• defvjp (defined in core.py) is a convenience routine for

registering VJPs.

 defvjp(anp.exp, lambda g, ans, x: ans * g)

28

Implementing Vector-Jacobian Product (VJP)

• Instead of explicitly computing the derivatives (gradients) for

each data sample following the backward direction

• Construct a computation graph for gradient calculation for

every node

• Applicable to any input data (and output=loss)

29

Auto Differentiation

30

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

31

y=x1 + exp(1.5 * x1 + 2.0 * x2)
x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+

𝑥7

= 1

𝑥6

𝑥4

𝑥5

exp(.)

id

𝑥5→6 *

id

𝑤2*𝑥2

*

𝑥3
id

𝑤1*
𝑥1

𝑥1→3

*

+

Quiz

32

𝑥1

𝑥2

𝑥4

𝑤

*

𝑥6

exp(.)

𝑥7

+

𝑥5

= 1

𝑥3

-

1/x

33

Implementing Backward Pass

(important for HW1)

34

Build the AutoDiff Graph

35

Use AutoGrad

• use finite differences to check our gradient calculations
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
=

𝑓 𝑥1 + ℎ, 𝑥2 − 𝑓(𝑥1 − ℎ, 𝑥2)

2ℎ

• Care the precision!

o Use double precision (fp64)

o Pick a small ℎ = 0.000001

oCompute the forward difference through the graph twice

36

How to check the correctness of gradient

• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

• https://github.com/mattjj/autodidact/

37

Summary

• Auto Diff survey, https://arxiv.org/abs/1502.05767

• The Elements of Differentiable Programming (Book),

https://arxiv.org/abs/2403.14606

38

Additional Reading

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606

• TensorFlow: A System for Large-Scale Machine Learning,

OSDI 2016.

39

Reading for Next Class

	Slide 1: 11868 LLM Systems Auto Differentiation
	Slide 2: Recap
	Slide 3: Recap
	Slide 4: Today’s Topic
	Slide 5: A Simple Feedforward Neural Network
	Slide 6: Training Loss for Classification
	Slide 7: Today’s focus (using PyTorch Example)
	Slide 8: The Learning Problem
	Slide 9: Generic Iterative Algorithm
	Slide 10: Gradient Descent
	Slide 11: (Stochastic) Gradient Descent Algorithm
	Slide 12: How to compute the gradient for every parameter in an “arbitrary network”?
	Slide 13: Today’s Topic
	Slide 14: Computation Graph
	Slide 15
	Slide 16: Topological Sort
	Slide 17: Building Computation Graph
	Slide 18: Implementation
	Slide 19: Wrapper around Numpy
	Slide 20: Today’s Topic
	Slide 21: Gradient Calculation
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Partial derivatives for Vectors
	Slide 26: Vector Jacobian Product
	Slide 27: Example
	Slide 28: Implementing Vector-Jacobian Product (VJP)
	Slide 29: Auto Differentiation
	Slide 30
	Slide 31
	Slide 32: Quiz
	Slide 33: Implementing Backward Pass (important for HW1)
	Slide 34: Build the AutoDiff Graph
	Slide 35: Use AutoGrad
	Slide 36: How to check the correctness of gradient
	Slide 37: Summary
	Slide 38: Additional Reading
	Slide 39: Reading for Next Class

