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• GPU is composed of 

o streaming processing units (SMs)
▪ each with four partitions of 32 cores

▪ shared L1 cache 

omemory

o L2 cache: share with all SMs

• Threads organized in

o grid of thread blocks

o each block is divided into warps 

running on one SM.
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• Basic CUDA operations

omemory allocation

o data movement

o creating threads and running on SMs
▪ specifying number of threads and number of blocks in a grid

o referring to data in GPU memory within a thread
▪ using building index variables to refer to the data

• Implementing parallel matrix operations on GPUs

o partition the data and computation and assign to threads
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Recap



• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation
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Today’s Topic



• Neural network layers

o Embedding (lookup table)

o Linear 

o Relu

o Average pooling

o Softmax
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A Simple Feedforward Neural Network
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• 𝑥𝑛, 𝑦𝑛  are data and label pairs for training

• Cross entropy

ℒ(𝜃) =
1

𝑁
∑

𝑛=1

𝑁

− log𝑓(𝑥𝑛)𝑦𝑛

• Pytorch CrossEntropyLoss is implemented as

o Negative Likelihood on logits
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Training Loss for Classification



loss = nn.CrossEntropyLoss()

output = loss(input_logits, target_labels)

grads = output.backward()
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Today’s focus (using PyTorch Example)

how is backward implemented?

how does it work on any network?



• Given a training set of input-output pairs 𝐷
= {(𝑥𝑛, 𝑦𝑛)}𝑛=1

𝑁

o 𝑥𝑛 and 𝑦𝑛 may both be vectors

• To find the model parameters such that the model 
produces the most accurate output for each 
training input
o Or a close approximation of it

• Learning the parameter of a neural network is an 
instance!
o The network architecture is given
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The Learning Problem

𝑦

𝑿



• Consider a generic function minimization problem, where x is 
unknown variable

min 𝑓(𝑥)
𝑥

 where 𝑓: ℝ𝑑 → ℝ

• Iterative update algorithm 

𝑥𝑡+1 ← 𝑥𝑡 + Δ

• so that 𝑓(𝑥𝑡+1) ≪ 𝑓(𝑥𝑡)

• How to find Δ
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Generic Iterative Algorithm



𝑓(𝑥𝑡 + Δ𝑥) ≈ 𝑓(𝑥𝑡) + Δ𝑥𝑇𝛻𝑓|𝑥𝑡

• To make Δ𝑥𝑇𝛻𝑓|𝑥𝑡
 smallest

o ⇒ Δ𝑥 in the opposite direction of 𝛻𝑓|𝑥𝑡
i.e.Δ𝑥 = −𝛻𝑓|𝑥𝑡

• Update rule: 𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝛻𝑓|𝑥𝑡

• 𝜂 is a hyper-parameter to control the learning rate
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Gradient Descent



set learning rate eta.

1. set initial parameter 𝜃 ← 𝜃0

2. for epoch = 1 to maxEpoch or until converg:

3.   for each batch in the data:

4.     total_g = 0

5.     for each data (x, y) in data batch:

6. compute error err(f(x; 𝜃) - y)

7. compute gradient 𝑔 =
𝜕err(𝜃)

𝜕𝜃

8. total_g += g

9. update 𝜃 = 𝜃 - eta * total_g / N
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(Stochastic) Gradient Descent Algorithm



• Goal: 
𝜕𝑙

𝜕𝑤𝑖

• Forward computation

• Backpropogation
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How to compute the gradient for every 

parameter in an “arbitrary network”?
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• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation
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Today’s Topic



• Calculations on a neural network can be defined using 

computation graph

• Each node denotes a variable or an operation

• Directed edges to connect nodes, indicating the input 

values for operations. 
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Computation Graph
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f = x1 +  exp(1.5 * x1 + 2.0 * x2) 
Computation:

1. Topological sorting of all 

nodes

2. Calculate the value for 

each node given its input

x1= 3, x2=0.5



• Put all nodes into un-

processed queue. 

• Repeatedly, find a node 

without incoming edges from 

un-processed nodes

o evaluate its value based on 

operation

o remove the node from the 

queue and add it to processed 

queue
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Topological Sort
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• Most autodiff systems, including Pytorch/Autograd, explicitly 

construct the computation graph. 

• TensorFlow provide mini-languages for building 

computation graphs directly. 

• Disadvantage: need to learn a totally new API. 

• Autograd (JAX) instead builds them by tracing the forward 

pass computation (similar to numpy).
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Building Computation Graph



• Node class, with attributes

o value: the actual value computed on a particular set of inputs 

o fun: the primitive operation defining the node 

o args and kwargs: the arguments the op was called with 

o parents: the parent Nodes

• More details in next lecture
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Implementation

https://github.com/mattjj/autodidact 

https://github.com/mattjj/autodidact


• Autograd’s NumPy module provides primitive ops which 

look and feel like NumPy functions, but secretly build the 

computation graph.
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Wrapper around Numpy



• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

o constructing the computation graph for calculating gradients
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Today’s Topic



• To learn a neural network, we need gradient of loss function 

w.r.t. parameters. 

• Parameters are also variables, and represented as nodes in 

the computation graph.

• Chain rule => backpropogation
𝑑𝑦(𝑧)

𝑑𝑥
=

𝑑𝑦(𝑧)

𝑑𝑧
∙

𝑑𝑧

𝑑𝑥
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Gradient Calculation
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) Computing the derivatives 
𝜕𝑦

𝜕𝑥𝑖

Define ഥ𝑥𝑖 =
𝜕𝑦

𝜕𝑥𝑖

𝑥7 = 1
𝑥6 = 1

𝑥5 =
𝜕𝑦

𝜕𝑥6
∙

𝜕𝑥6

𝜕𝑥5
= 𝑥6 ∙ exp(𝑥5)

𝑥4 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥4
= 𝑥5

𝑥3 =
𝜕𝑦

𝜕𝑥5
∙

𝜕𝑥5

𝜕𝑥3
= 𝑥5

𝑤2 =
𝜕𝑦

𝜕𝑥4
∙

𝜕𝑥4

𝜕𝑤2
= 𝑥4 ∙ 𝑥2

x1= 3, x2=0.5

𝑥1

𝑥3

𝑥5

𝑤1

= 1.5

*

+

𝑥6

exp(.)

𝑥7

𝑥2

𝑥4

𝑤2

= 2.0

*

+



24

𝑦 𝑧
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Node with multiple outgoing edges



Jacobian

𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1
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Partial derivatives for Vectors

row: keep y index, iter x index

col: keep x index, iter y index



𝐽 =
𝜕𝑦

𝜕𝑥
=

𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

• computing the partial derivative for each node (vector)

ҧ𝑥 = 𝐽𝑇 ത𝑦
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Vector Jacobian Product



𝑦 = 𝑊𝑥
ҧ𝑥 = 𝑊𝑇 ത𝑦
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Example



• For each primitive operation, we must specify VJPs for each 

of its arguments. 

• defvjp (defined in core.py) is a convenience routine for 

registering VJPs. 

 defvjp(anp.exp,    lambda g, ans, x: ans * g)
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Implementing Vector-Jacobian Product (VJP)



• Instead of explicitly computing the derivatives (gradients) for 

each data sample following the backward direction

• Construct a computation graph for gradient calculation for 

every node 

• Applicable to any input data (and output=loss)
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Auto Differentiation
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) Computing the derivatives 
𝜕𝑦

𝜕𝑥𝑖
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y=x1 +  exp(1.5 * x1 + 2.0 * x2) 
x1= 3, x2=0.5
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Quiz
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Implementing Backward Pass 

(important for HW1)
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Build the AutoDiff Graph
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Use AutoGrad



• use finite differences to check our gradient calculations
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
=

𝑓 𝑥1 + ℎ, 𝑥2 − 𝑓(𝑥1 − ℎ, 𝑥2)

2ℎ

• Care the precision!

o Use double precision (fp64)

o Pick a small ℎ = 0.000001

oCompute the forward difference through the graph twice
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How to check the correctness of gradient



• Learning parameters of an NN needs gradient calculation

• Computation Graph

o to perform computation: topological traversal along the DAG

• Auto Differentiation

o building backward computation graph for gradient calculation

• https://github.com/mattjj/autodidact/
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Summary



• Auto Diff survey, https://arxiv.org/abs/1502.05767 

• The Elements of Differentiable Programming (Book), 

https://arxiv.org/abs/2403.14606 
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Additional Reading

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/2403.14606
https://arxiv.org/abs/2403.14606


• TensorFlow: A System for Large-Scale Machine Learning, 

OSDI 2016.
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Reading for Next Class
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