
11868 LLM Systems
GPU Programming

Lei Li

1



• https://llmsystem.github.io/llmsystem2024spring/assets/file
s/11868_LLM_Systems_Assignment_1-
ee1244bd2b2f8f2de8e5e9e857f6791f.pdf

• Due 2/5 midnight.

2

Assignment 1

https://llmsystem.github.io/llmsystem2024spring/assets/files/11868_LLM_Systems_Assignment_1-ee1244bd2b2f8f2de8e5e9e857f6791f.pdf
https://llmsystem.github.io/llmsystem2024spring/assets/files/11868_LLM_Systems_Assignment_1-ee1244bd2b2f8f2de8e5e9e857f6791f.pdf
https://llmsystem.github.io/llmsystem2024spring/assets/files/11868_LLM_Systems_Assignment_1-ee1244bd2b2f8f2de8e5e9e857f6791f.pdf


Language Model

P 𝑥!..# =$
$%!

&

P(x$'!|x!..$)

Language Model

3

bridges
corn

0.6
0.02 

𝑃(𝑥!|𝑥"!)

Decoder

[BOS]      Pgh      is          a          city        of

Pgh          is       a         city        of



• Operators needed for Neural network

• GPU Architecture overview

• Basic CUDA operations 

• Matrix/Tensor Computation on GPU

4

Today’s Topic



Classifying the sentiment of online movie reviews. (Positive, 
negative, neutral)

5

Text Classification

Spider-Man is an almost-perfect extension of the 
experience of reading comic-book adventures.

The acting is decent, casting is good.

It was a boring! It was a waste of a movie to even be 
made. It should have been called a family reunion.

👍

👍

👎



• Layers in FFN
o Embedding (lookup table)
o Linear 
o Relu
o Softmax

6

A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

It is a good movie



• Matrix multiplication

• Element-wise ops (add, scale, relu)

• Reduce ops (sum, avg)

• Efficient computation requires GPU 

7

Low-level Computation Operators

Linear

Relu

Linear

Softmax

Embedding

It is a good movie



A Modern Computing Server

8

A Sample Config (my lab)
• CX4860s-EK9 4U server
• 2x AMD EPYC 9354 CPU
• 16x 64GB DDR5 mem
• 4x Intel D7 P5520 

15.36TB Gen4 NVMe 
SSD

• 8x Nvidia A6000 48GB
• 4x 2slot NVLink



CPU

9

Computing Devices
GPU

Intel Xeon 8593Q
64cores
128threads
2.2GHz
320MB L3

AMD EPYC 9754
128cores
256threads
2.25GHz
256MB L3

FPGA

Nvidia A6000
10,752 cores
48GB
38.7 TFLOPS

More powerful than the #1 
supercomputer in 2001



Communication

10

GPU-to-GPU
• NVLink 112.5 GB/s
• PCIe Gen4 32 GB/s 

(16x2)



Modern Computing Server Architecture

11



GPU Architecture

12

84 SMs 
(Streaming 
Multiprocessors)
12 memory 
controller (32bit 
ea.), total 384bit
6MB L2 cache 



Streaming Multiprocessor

13

4 partitions per SM, each with 32 
cores è 32 threads each
128 cores per SM
64KB register per partition
128KB shared L1 cache per SM

128 FP32 operations in one cycle



CPU GPU
num. threads 256 10752
clock 2.25 GHz 1.8 GHz
compute 576 GFlops 38.7 TFlops

14

CPU vs. GPU



• Threads are grouped into 
Thread Blocks

• Thread Blocks are 
grouped into Grid

• Kernel executed as Grid of 
Blocks of Threads

15

SIMT Execution on GPU

GPU

SM SM SM

84

SM SM SM



SIMT Execution on GPU

16

GPU

SM SM SM

SM SM SM
Grid

Thread 
Block

Thread 
Block

Thread 
Block



• CPU – host
o Run normal program (C++)

• GPU – device
o Run cuda kernel code 

• CUDA: one part runs on CPU, one part runs on GPU

• Needs to move data between system memory and GPU 
memory

17

GPU Programming Model



nvcc -o output.so --shared src.cu -Xcompiler -fPIC 
18

Compiling CUDA Code



• CPU allocates GPU memory: cudaMalloc

• CPU copies data to GPU memory (host to device): 
cudaMemcpy

• CPU launches GPU kernels

• CPU copies results from GPU (device to host): 
cudaMemcpy

19

CUDA Operations



CPU-GPU Data Movement

20

GPU

GPU Memory

SM SM SM

84

CPU

System 
Memory

PCIe

32 GB/s
768GB/s64~512GB/s



• Each kernel is a function that runs on GPU

• Program itself is serial

• Can simultaneously run many (10k) threads at the same 
time

• Using thread index to compute on right portion of data

21

CUDA Kernel



• CPU invokes kernel grid

• Thread blocks in grid distributed to SMs

• Execute concurrently
o Each SM runs multiple thread blocks
o Each core runs one thread from one thread block

22

Running GPU kernel



Code Example 

23

__global__ void VecAddKernel(int* A, int* B, int* C, 
int n) {

int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {

C[i] = A[i] + B[i];
}

}

int main() {
 VecAddKernel<<<1, N>>>(A, B, C, N);
}

Define kernel function, __global__



• Both host and device code in same .cu file

• Indicate where the code will run

24

Declaration of Host/Device function

keyword call on execute on
__global__ host (cpu) device (gpu)
__device__ device (gpu) device (gpu)
__host__ host host



Code Example 

25

int *dA;
cudaMalloc(&dA, n * sizeof(int));

float *dB;
cudaMalloc(&dA, n * sizeof(float));

Allocating memory in GPU



Code Example 

26

cudaMemcpy(dA, Acpu, n * sizeof(int), 
cudaMemcpyHostToDevice);

cudaMemcpy(Ccpu, dC, n * sizeof(int), 
cudaMemcpyDeviceToHost);

Copy data from cpu to gpu, gpu to cpu



Code Example 

27

// n: the size of the vector
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / 
       threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, 
dB, dC, n);

Running kernels on GPU



• Host program specifies grid-block-threads configurations 
for kernel at run time
<<<Dg, Db>>>

• Dg and Db are either dim3 or int

• Dg: size of grid (num. of blocks)
o Dg.x * Dg.y * Dg.z is num. of blocks

• Db: size of block
o Db.x * Db.y * Db.z is num. of threads per block, <=1024)

28

Calling Kernel at Runtime



• Host launches kernels on a gpu device

• Each kernel thread needs to know which thread it is 
running, i.e. threadId

• Compiler generates build-in variables, with x, y, z fields

29

Device Runtime Variables

gridDim dim3 dimensions of grid
blockIdx uint3 index of block within grid
blockDim dim3 dimensions of block
threadIdx uint3 index of thread within block



30

__global__ void MatAddKernel(float* A, float* B, 
float* C, int N) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
C[i * N + j] = A[i * N + j] + B[i * N + j];

}

int main() {
int N = 32; 
dim3 threads_per_block(N, N);
int num_blocks = 1;
MatAddKernel<<<num_blocks, threads_per_block>>>(dA, 
dB, dC, N);

}



31

int main() {
dim3 threads_per_block(2, 4, 8);
dim3 blocks_per_grid(2, 3, 4);
fullKernel<<<blocks_per_grid, 
threads_per_block>>>(some_input, some_output);

}

24 blocks per grid
64 threads per block
1536 threads in total 
can you run this simultaneously on A6000?



32

__global__ void fullKernel(float* din, float* dout) {
int block_id = blockIdx.x + blockIdx.y * gridDim.x 

+ blockIdx.z * gridDim.x * gridDim.y;
int block_offset = block_id * blockDim.x * 

blockDim.y * blockDim.z;
int thread_offset = threadIdx.x 
 + threadIdx.y * blockDim.x 
 + threadIdx.z * blockDim.x * blockDim.y;
int tid = block_offset + thread_offset;
dout[tid] = func(din[tid]);

}



Vector Addition

33

void VecAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * sizeof(int));
cudaMalloc(&dB, n * sizeof(int));
cudaMalloc(&dC, n * sizeof(int));
cudaMemcpy(dA, Acpu, n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * sizeof(int), cudaMemcpyHostToDevice);
int threads_per_block = 256;
int num_blocks = (n + threads_per_block - 1) / threads_per_block;
VecAddKernel<<<num_blocks, threads_per_block>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA); 
cudaFree(dB); 
cudaFree(dC);

}



Matrix Addition

34

void MatAddCUDA(int* Acpu, int* Bcpu, int* Ccpu, int n) {
int *dA, *dB, *dC;
cudaMalloc(&dA, n * n * sizeof(int));
cudaMalloc(&dB, n * n * sizeof(int));
cudaMalloc(&dC, n * n * sizeof(int));
cudaMemcpy(dA, Acpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dB, Bcpu, n * n * sizeof(int), cudaMemcpyHostToDevice);
int THREADS = 32;
int BLOCKS = (n + THREADS - 1) / THREADS;
dim3 threads(THREADS, THREADS); // should be <= 1024
dim3 blocks(BLOCKS, BLOCKS);
MatAddKernel<<<blocks, threads>>>(dA, dB, dC, n);
cudaMemcpy(Ccpu, dC, n * n * sizeof(int), cudaMemcpyDeviceToHost);
cudaFree(dA); 
cudaFree(dB); 
cudaFree(dC);

}



• Each thread has private registers (fastest to access)

• Each thread block has shared memory
o Visible to all threads in a block
o __shared__

• All threads can access global gpu memory
o Persistent across kernel launches in the same app

35

GPU memory



• SM partition a thread block into warps

• Warp is the unit of GPU creating, managing, scheduling 
and executing threads

• Each warp contains 32 threads
o Start at same program address
oHave own program counter and registers
o Execute one common instruction at a cycle
oCan branch and execute independently

36

How Kernel Threads are Executed



• Execution context stays on SM for lifetime of warp 
(Program counter, Registers, Shared memory)

• Warp-to-warp context switch is instant

• At running time, warp scheduler 
oChooses warp with active threads
o Issues instruction to warp’s threads

• Number of warps on SM depends on mem requested and 
available

37

Warp Execution on GPU



• See notebook example.

• https://github.com/llmsystem/llmsys_code_examples 

38

Matrix Multiplication with CUDA



• Operators needed for Neural network

• GPU Architecture overview

• Basic CUDA operations 

• Matrix/Tensor Computation on GPU

39

Summary


