
GPU Programming

Lei Li

P 𝑥1..𝑇 =ෑ

t=1

T

P(xt+1|x1..t)

Recap: Language Model

2

bridges

corn
0.6

0.02

𝑃(𝑥𝑡|𝑥<𝑡)

Decoder

[BOS] Pgh is a city of

Pgh is a city of

Transformer
GPT1

GPT2

GPT3
Gopher

PALM

GPT4

Nemotron

LLaMA3-8B

LLaMA3.1

Qwen2

DeepSeek-v3

0

0

1

10

100

1,000

10,000

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

size(B)

3

Recap: Scaling of LLMs
(the need for system optimization)

• Programming model

o relies on good abstraction

• Latency/Throughput

o Data movement

oComputation

• Reliability

• Security

4

Recap: Important Topics in LLM systems

• GPU Architecture Overview

o components of a GPU server

oComparison of Processors

oGPU components and physical limits

o How are programs executed on GPU?

5

Outline

Classifying the sentiment of online movie reviews. (Positive,

negative, neutral)

6

Text Classification

Spider-Man is an almost-perfect extension of the

experience of reading comic-book adventures.

It was a boring! It was a waste of a movie to even be

made. It should have been called a family reunion.

• Neural network layers

o Embedding (lookup table)

o Linear

o Relu

o Average pooling

o Softmax

7

A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

• Matrix multiplication

• Element-wise ops (add, scale, relu)

• Reduce ops (sum, avg)

• Efficient computation requires GPUs

8

Low-level Computing Operators

Linear

Relu

Linear

Softmax

Embedding

“It is a good movie”

Avg

A Modern Computing Server

9

A Sample Config (my lab)
• CX4860s-EK9 4U server

• 2x AMD EPYC 9354 CPU

• 16x 64GB DDR5 mem

• 4x Intel D7 P5520

15.36TB Gen4 NVMe

SSD

• 8x Nvidia A6000 48GB

• 4x 2slot NVLink

Communication

10

GPU-to-GPU

• NVLink 112.5 GB/s

• PCIe Gen4 32 GB/s

(16 lanes x 2 GB/s per

lane)

Modern Computing Server Architecture

11

Why is it relevant?

Considering moving gradients from one GPU to another

Computing Devices

12

CPU GPU

Intel Xeon

8593Q

64cores

128threads

2.2GHz

320MB L3

AMD EPYC 9754

128cores

256threads

2.25GHz

256MB L3

FPGA

Nvidia A6000

10,752 cores

48GB

38.7 TFLOPS

More powerful than the #1

supercomputer in 2001

Architecture Blackwell Hopper Ampere

GPU Name NVIDIA B200 NVIDIA H100 NVIDIA A100

FP64 40 teraFLOPS 34 teraFLOPS 9.7 teraFLOPS

FP64 Tensor Core 40 teraFLOPS 67 teraFLOPS 19.5 teraFLOPS

FP32 80 teraFLOPS 67 teraFLOPS 19.5 teraFLOPS

FP32 Tensor Core 2.2 petaFLOPS 989 teraFLOPS 312 teraFLOPS

FP16/BF16 Tensor Core 4.5 petaFLOPS 1979 teraFLOPS 624 teraFLOPS

INT8 Tensor Core 9 petaOPs 3958 teraOPs 1248 teraOPs

FP8 Tensor Core 9 petaFLOPS 3958 teraFLOPS -

FP4 Tensor Core 18 petaFLOPS - -

GPU Memory 192GB HBM3e 80GB HBM3 80GB HBM2e

Memory Bandwidth Up to 8TB/s 3.2TB/s 2TB/s 13

GPU Lineup

GPU Architecture

14

Nvidia RTX A6000

(GA102)

84 SMs

(Streaming

Multiprocessors)

12 memory

controller (32bit

ea.) total 384bit.

6MB L2 cache.

4 partitions per SM, each with 32

cores ➔ 32 threads each

128 cores per SM

64KB register per partition (fastest

to access)

128KB shared L1 cache per SM

128 FP32 operations in one cycle
15

Streaming Multiprocessor

CPU (AMD EPYC 9754) GPU (A6000)

num. threads 256 10752

clock 2.25 GHz 1.8 GHz

compute 576 GFlops 38.7 TFlops

Power 360W 300W

16

CPU vs. GPU

• CPU – host

o Run normal program (C++)

• GPU – device

o Run cuda kernel code

• CUDA: one part runs on CPU, one part runs on GPU

• Needs to move data between system memory and GPU

memory

17

GPU Programming Model

• Single Instruction Multiple

Threads

• Threads are grouped into

Thread Blocks

• Thread Blocks are grouped

into Grid

• Kernel executed as Grid of

Blocks of Threads
18

SIMT Execution on GPU

GPU

SM SM SM

84

SM SM SM

How instructions are executed on GPU

19

GPU

SM SM SM

SM SM SM

Grid

Thread
Block

Thread

Block

Thread

Block

• SM partition a thread block into warps

• Warp is the unit of GPU creating, managing, scheduling and

executing threads

• Each warp contains 32 threads (why 32?)

o Start at same program address

o Have own program counter and registers

o Execute one common instruction at a cycle

oCan branch and execute independently

20

How Kernel Threads are Executed

• Execution context stays on SM for lifetime of warp (Program

counter, Registers, Shared memory)

• Warp-to-warp context switch is instant

• At running time, warp scheduler

oChooses warp with active threads

o Issues instruction to warp’s threads

• Number of warps on SM depends on mem requested and

available
21

Warp Execution on GPU

Grid

Executing one Thread block on one SM

22

GPU

Warp1

Thread Block

Warp1 Warp2

Warp3 Warp4

SM

4 warps can be executed in parallel at one time on each SM

partition1

CPU-GPU Data Movement

23

GPU

GPU Memory

SM SM SM

84

CPU

System Memory

PCIe

32 GB/s

768GB/s64~512GB/s

• Each kernel is a function (program) that runs on GPU

• Program itself is serial

• Can simultaneously run many (10k) threads at the same

time

• Using thread index to compute on right portion of data

24

CUDA Kernel

Compiling CUDA Code

25

nvcc -o output.so --shared src.cu -Xcompiler -fPIC

• GPU is composed of

o streaming processing units (SMs)
▪ each with four partitions of 32 cores

▪ shared L1 cache

omemory

o L2 cache: share with all SMs

• Threads organized in

o grid of thread blocks

o each block is divided into warps running on one SM.

26

Summary

• Write GPU Programs

27

Next

https://llmsystem.github.io/llmsystem2025springhw/assignme

nt_1/

Starter code: https://github.com/llmsystem/llmsys_s25_hw1.git

Due Feb 3

28

Assignment 1

https://llmsystem.github.io/llmsystem2025springhw/assignment_1/
https://llmsystem.github.io/llmsystem2025springhw/assignment_1/
https://github.com/llmsystem/llmsys_s25_hw1.git

https://forms.gle/98RDShDfk3sVCCDr6

29

Quiz/Survey of Prior knowledge

https://forms.gle/98RDShDfk3sVCCDr6

	Slide 1: GPU Programming
	Slide 2: Recap: Language Model
	Slide 3: Recap: Scaling of LLMs (the need for system optimization)
	Slide 4: Recap: Important Topics in LLM systems
	Slide 5: Outline
	Slide 6: Text Classification
	Slide 7: A Simple Feedforward Neural Network
	Slide 8: Low-level Computing Operators
	Slide 9: A Modern Computing Server
	Slide 10: Communication
	Slide 11: Modern Computing Server Architecture
	Slide 12: Computing Devices
	Slide 13: GPU Lineup
	Slide 14: GPU Architecture
	Slide 15: Streaming Multiprocessor
	Slide 16: CPU vs. GPU
	Slide 17: GPU Programming Model
	Slide 18: SIMT Execution on GPU
	Slide 19: How instructions are executed on GPU
	Slide 20: How Kernel Threads are Executed
	Slide 21: Warp Execution on GPU
	Slide 22: Executing one Thread block on one SM
	Slide 23: CPU-GPU Data Movement
	Slide 24: CUDA Kernel
	Slide 25: Compiling CUDA Code
	Slide 26: Summary
	Slide 27: Next
	Slide 28: Assignment 1
	Slide 29: Quiz/Survey of Prior knowledge

