11868 LLM Systems LLM Serving

Lei Li

Carnegie Mellon University Language Technologies Institute

Today's Topic

- 1. Architectures for LLM Applications
- 2. Frameworks for LLM Serving

LLM App Stack

https://a16z.com/emerging-architectures-for-llm-applications/

LLM App Stack

• Data Pipelines

Include loaders, parsers, and preprocessing.
E.g. Databricks, Airflow, and Unstructured.

• Embedding Model

o Different models have their own advantages.

OpenAI: Effective but cheap

Cohere: Focus more on embeddings

Hugging Face: Open-source

o Customer Embedding: e.g. BERT

Cohere

Vector Database

 Offer optimized storage and query capabilities for the unique structure of vector embeddings.

• Vector Database

Pinecone: Fully clound-hosted

o chroma: Local vector management

o Faiss: by meta

Weaviate: Open-source

2. Prompt Construction / Retrieval

2. Prompt Construction / Retrieval

Orchestration (Prompt Optimization/Engineering)

- Abstract away many of the details of prompt chaining
- o Interface with external APIs
- Retrieve contextual data from vector databases
- o Maintain memory across multiple LLM calls
- Output a prompt, or a series of prompts, to submit to an LLM

2. Prompt Construction / Retrieval

Orchestration

LlamaIndex: Specially designed for building search and retrieval applications
 LangChain: A general-purpose framework for a wide variety of applications

• LLM APIs

o Proprietary APIs: E.g. OpenAI and Anthropic.o Open APIs: E.g. Hugging Face and Replicate.

o ChatGPT: May have unreliable latency for production.

# tokens	p50 latency (sec)	p75 latency	p90 latency
input: 51 tokens, output: 1 token	0.58	0.63	0.75
input: 232 tokens, output: 1 token	0.53	0.58	0.64
input: 228 tokens, output: 26 tokens	1.43	1.49	1.62

• LLM Hosting

o General Could : E.g. AWS, GCP, and Azure.o Opinionated Cloud: E.g. Databricks, Anyscale, and Mosaic.

• LLM Cache

o E.g. Redis, SQLite, and GPTCache.

Validation

o E.g. Guardrails, Rebuff, and Guidance.

• Logging

o E.g. Weights&Biases, MLflow, and PromptLayer.

App Hosting

Vercel: Provide a cloud-native solution

Steamship: end-to-end hosting

o Anyscale and Modal: Host models and Python code in one place

anyscale Modal

Build App Autonomously with AI Agent

- Can we use AI to perform any task?
- AutoGPT
 - Let an LLM-based AI agent decide what to do, while feeding its results back into the prompt.
 - This allows the program to iteratively and incrementally work towards its objective.

Today's Topic

- 1. Architectures for LLM Applications
- 2. Frameworks for LLM Serving

Frameworks for LLM Serving

• In this lecture:

NVIDIA Triton + LightSeq/TensorRT-LLM
 Text Generation Inference
 OpenLLM
 MLC LLM
 LightLLM

In the later lectures:
 vLLM / DeepSpeed

Figure 2: Overall workflow of serving a generative language model with existing systems.

Triton"s"

• Triton (Inference Server) from NVIDIA

 An open-source inference serving software that streamlines Al inferencing.

• Triton from OpenAl

 A language and compiler for writing highly efficient custom Deep-Learning primitives.

NVIDIA Triton

- It supports for various deep learning frameworks.
 o E.g. TensorFlow and PyTorch.
- It optimizes inference for multiple query types.
 o E.g. real-time, batch, and streaming.
- It can be deployed on different environments
 E.g. public cloud and embedded devices.

NVIDIA Triton – Dynamic Batching

Figure 2. NVIDIA Triton dynamic batching

NVIDIA Triton + LightSeq / TensorRT-LLM

- For LLM serving, Triton has to use with an inference engine, e.g., LightSeq or TensorRT-LLM.
- Triton groups multiple client requests into a batch.
- TensorRT-LLM conducts the inference procedure in the batched manner.

Triton Inference Server

LightSeq/TensorRT-LLM

NVIDIA Triton + FasterTransformer – Code

Run web server using docker:

•••

Step 1: Clone fastertransformer_backend from the Triton GitHub repository
git clone https://github.com/triton-inference-server/fastertransformer_backend.git
cd fastertransformer_backend && git checkout -b t5_gptj_blog remotes/origin/dev/t5_gptj_blog

Step 2: Build Docker container with Triton and FasterTransformer libraries

cd .../

Steps 3 and 4: Clone FasterTransformer source codes and build the library

git clone https://github.com/NVIDIA/FasterTransformer.git
mkdir -p FasterTransformer/build && cd FasterTransformer/build
git submodule init && git submodule update
cmake -DSM=xx -DCMAKE_BUILD_TYPE=Release -DBUILD_PYT=ON -DBUILD_MULTI_GPU=ON ..
make -j32

Step 5 (GPT-J): Download and prepare weights of the GPT-J model

wget https://mystic.the-eye.eu/public/AI/GPT-J-6B/step_383500_slim.tar.zstd tar -axf step_383500_slim.tar.zstd -C ./models/

Step 6 (GPT-J): Convert weights into FT format

python3 ./FasterTransformer/examples/pytorch/gptj/utils/gptj_ckpt_convert.py \

- --output-dir ./models/j6b_ckpt \
- --ckpt-dir ./step_383500/ \
- --n-inference-gpus 2

Step 7 (GPT-J): Kernel-autotuning for the GPT-J inference

./FasterTransformer/build/bin/gpt_gemm 8 1 32 12 128 6144 51200 1 2

Step 8 (GPT-J): Prepare the Triton config and serve the model CUDA_VISIBLE_DEVICES=0,1 /opt/tritonserver/bin/tritonserver --model-repository=./triton-model-store/gptj/ &

NVIDIA Triton + FasterTransformer – Code

Make queries:

•••

Import libraries
import tritonclient.http as httpclient

```
# Initizlize client
```

client = httpclient.InferenceServerClient("localhost:8000",

concurrency=1,
verbose=False)

...

```
# Sending request
result = client.infer(MODEl_GPTJ_FASTERTRANSFORMER, "Funniest joke ever:")
print(result.as_numpy("OUTPUT_0"))
```

Text Generation Inference

• It has optimized transformers code for inference using Flash Attention and Paged Attention.

Native support for models from HuggingFace.

• It is production ready and can monitor the server load and get insights into its performance.

• Distributed tracing with Open Telemetry, Prometheus metrics.

It offers a wide range of options to manage model inference.
 o E.g. precision adjustment and quantization.

Text Generation Inference – Framework

Inferentia2 or Gaudi2

Text Generation Inference – Code

Run web server using docker:

- 1 mkdir data
- 2 docker run --gpus all --shm-size 1g -p 8080:80 $\$
- 3 -v data:/data ghcr.io/huggingface/text-generation-inference:0.9 \
- 4 --model-id huggyllama/llama-13b \
- 5 --num-shard 1

Make queries:

OpenLLM

- It allows users to easily create AI applications by composing LLMs with other models and services.
 E.g. LangChain, LlamaIndex, and Hugging Face.
- It allows users to bring their own LLM and fine-tune them.
- It is an open-source platform and constantly developing.

OpenLLM – Code

Run web server:

•••

```
pip install openllm scipy
openllm start llama --model-id huggyllama/llama-13b \
    --max-new-tokens 200 \
    --temperature 0.95 \
    --api-workers 1 \
    --workers-per-resource 1
```

Make queries:

•••

```
import openllm
```

```
client = openllm.client.HTTPClient('http://localhost:3000')
print(client.query("Funniest joke ever:"))
```

MLC LLM

- It enables the users to develop, optimize and deploy Al models natively on consumer devices.
- It can compile the model for different platforms.
 E.g. C++ for the command line, JavaScript for the web, Swift for iOS, and Java/Kotlin for Android.

MLC LLM – Framework

① Model definition

2 Model compilation

③ Platform-native runtimes

MLC LLM – Advantage of Local LLM

MLC LLM – Code

Run web server:

•••

```
# 1. Make sure that you have python >= 3.9
# 2. You have to run it using conda:
conda create -n mlc-chat-venv -c mlc-ai -c conda-forge mlc-chat-nightly
conda activate mlc-chat-venv
```

3. Then install package:

```
pip install --pre --force-reinstall mlc-ai-nightly-cu118 \
  mlc-chat-nightly-cu118 \
  -f https://mlc.ai/wheels
```

4. Download the model weights from HuggingFace and binary libraries:

```
git lfs install && mkdir -p dist/prebuilt && \
  git clone https://github.com/mlc-ai/binary-mlc-llm-libs.git dist/prebuilt/lib && \
  cd dist/prebuilt && \
  git clone https://huggingface.co/huggyllama/llama-13b dist/ && \
  cd ../..
```

5. Run server:

python -m mlc_chat.rest --device-name cuda --artifact-path dist

Make queries:

•••

```
import requests
```

```
payload = {
    "model": "lama-30b",
    "messages": [{"role": "user", "content": "Funniest joke ever:"}],
    "stream": False
```

}

r = requests.post("http://127.0.0.1:8000/v1/chat/completions", json=payload)
print(r.json()['choices'][0]['message']['content'])

LightLLM

- It performs tokenization, model inference, and detokenization asynchronously, to improve GPU utilization.
- It implements Token Attention, a token-wise's KV cache memory management algorithm.
- It adopts Efficient Router scheduling implementation, which collaborates with Token Attention to manage the GPU memory of each token.

LightLLM – Framework

A Light and Fast Inference Service for LLM

LightLLM – Performance

LightLLM – Code

Run web server using docker:

•••

pip install –r requirements.txt			
<pre>docker pull ghcr.io/modeltc/lightllm</pre>	n:main		
docker run -itgpus all -p 8080:80	080 \		
––shm–size 1g –v your_local_	_path:/data/ \		
ghcr.io/modeltc/lightllm:mai	in /bin/bash		
python setup.py install			
pip install triton==2.0.0.dev2022120	02		
python -m lightllm.server.api_servermodel_dir /path/llama-7B			
	host 0.0.0.0		
	port 8080		
	tp 1		
	<pre>max_total_token_num 120000</pre>		

Make queries:

•••

}

import time
import requests
import json

```
url = 'http://localhost:8080/generate'
headers = {'Content-Type': 'application/json'}
data = {
    'inputs': 'Funniest joke ever:',
    "parameters": {
        'do_sample': False,
        'ignore_eos': False,
        'max_new_tokens': 1024,
    }
```

response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
 print(response.json())
else:
 print('Error:', response.status_code, response.text)

References

- <u>https://a16z.com/emerging-architectures-for-llm-applications/</u>
- <u>https://superwise.ai/blog/considerations-best-practices-for-llm-architectures/</u>
- <u>https://huyenchip.com/2023/04/11/Ilm-engineering.html</u>
- <u>https://betterprogramming.pub/frameworks-for-serving-Ilms-60b7f7b23407</u>
- <u>https://developer.nvidia.com/blog/fast-and-scalable-ai-model-deployment-</u> <u>with-nvidia-triton-inference-server/</u>
- <u>https://huggingface.co/docs/text-generation-inference/en/index</u>
- <u>https://docs.databricks.com/en/workflows/index.html</u>
- <u>https://www.kdnuggets.com/2023/06/vector-databases-important-Ilms.html</u>
- <u>https://spotintelligence.com/2023/11/17/llm-orchestration-frameworks/</u>
- Yu, G. I., Jeong, J. S., Kim, G. W., Kim, S., & Chun, B. G. (2022). Orca: A distributed serving system for {Transformer-Based} generative models. In 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22) (pp. 521-538).