11868 LLM Systems Distributed GPU Training

Lei Li

Carnegie Mellon University Language Technologies Institute

Today's Topic

- Model Parallel
- Pipeline Parallelism
- Tensor Parallelism

Model Parallel

Motivation: The size of models increases exponentially fast and large. It is no longer possible to fit these large models into the main memory of a single GPU.

Model Parallel

Model Parallel: memory usage and computation of a model is distributed across multiple workers.

• Distributed over layer-wise computation

• Distributed over tensor computation

is equivalent to

Naïve Model Parallel: The model is distributed across multiple GPUs over layers.

all but one GPU is idle at any given moment!

5

Naïve Model Parallel: The model is distributed across multiple GPUs over layers within one single node.

layer name	output size	34-layer	50-layer	101-layer	
conv1	112×112		7×7, 64, stride 2	2	ר
			3×3 max pool, stric	ie 2	
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	- device0
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 4$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512\\ 3 \times 3, 512\\ 1 \times 1, 2048 \end{bmatrix} \times 3$	- device1
	1×1	av	erage pool, 1000-d fc,	softmax	J
FLO	OPs	3.6×10^9	3.8×10^9	7.6×10^9	

nccl send/recv

class ModelParallelResNet50(ResNet): def __init__(self, *args, **kwargs): super(ModelParallelResNet50, self).__init__(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, *args, **kwargs) self.seq1 = nn.Sequential(self.conv1,

self.convi,
self.bn1,
self.relu,
self.maxpool,

self.layer1, self.layer2
).to('cuda:0')

self.seq2 = nn.Sequential(
 self.layer3,
 self.layer4,
 self.avgpool,
).to('cuda:1')

self.fc.to('cuda:1')

def forward(self, x): x = self.seq2(self.seq1(x).to('cuda:1')) return self.fc(x.view(x.size(0), -1))

• **GPipe**: Divides input data mini-batches into smaller micro-batches.

GPipe: Divides input data mini-batches into smaller micro-batches.

			F _{3,0}	F 3,1	F _{3,2}	F 3,3	B 3,3	B 3,2	B 3,1	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F 1,3	ſ				B 1,3	B _{1,2}	B _{1,1}	B 1,0		Update
Fo,o	F 0,1	F 0,2	F _{0,3}		,	Bı	ubble	•		Во,з	B _{0,2}	B _{0,1}	B 0,0	Update

- (i) the number of model partitions K
- (ii) the number of micro-batches M
- (iii) the sequence and definitions of *L* layers that define the model

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

GPipe: Divides input mini-batches into smaller micro-batches. During backward, recomputes forward

			F _{3,0}	F 3,1	F 3,2	F _{3,3}	B 3,3	B 3,2	B _{3,1}	B 3,0				Update
		F _{2,0}	F _{2,1}	F _{2,2}	F _{2,3}			B _{2,3}	B _{2,2}	B _{2,1}	B _{2,0}			Update
	F 1,0	F 1,1	F 1,2	F 1,3	ſ				B 1,3	B _{1,2}	B _{1,1}	B 1,0		Update
F _{0,0}	F 0,1	F 0,2	F0,3		,	В	ubble	•		Во,з	B _{0,2}	B _{0,1}	B _{0,0}	Update

Bubble overhead: $O(\frac{K-1}{M+K-1})$ could be negligible when $M \ge 4 \times K$ Communication overhead: transfer activation tensors at the partition boundaries Peak activation memory: $O(N \times L) \rightarrow O(N + \frac{L}{K} \times \frac{N}{M})$

Pipeline Parallel: Split the inputs to reduce bubbles within one single node.

```
class ModelParallelResNet50(ResNet):
    def __init__(self, *args, **kwargs):
        super(ModelParallelResNet50, self).__init__(
            Bottleneck, [3, 4, 6, 3], num_classes=num_classes, *args, **kwargs)
```

self.seq1 = nn.Sequential(
 self.conv1,
 self.bn1,
 self.relu,
 self.maxpool,

```
self.layer1,
self.layer2
).to('cuda:0')
```

```
self.seq2 = nn.Sequential(
    self.layer3,
    self.layer4,
    self.avgpool,
).to('cuda:1')
```

self.fc.to('cuda:1')

```
def forward(self, x):
    x = self.seq2(self.seq1(x).to('cuda:1'))
    return self.fc(x.view(x.size(0), -1))
```

```
class PipelineParallelResNet50(ModelParallelResNet50):
    def __init__(self, split_size=20, *args, **kwargs):
```

super(PipelineParallelResNet50, self).__init__(*args, **kwargs)
self.split_size = split_size

```
def forward(self, x):
    splits = iter(x.split(self.split_size, dim=0))
    s_next = next(splits)
    s_prev = self.seq1(s_next).to('cuda:1')
    ret = []
```

```
for s_next in splits:
    # A. ``s_prev`` runs on ``cuda:1``
    s_prev = self.seq2(s_prev)
    ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))
```

B. ``s_next`` runs on ``cuda:0``, which can run concurrently with A
s_prev = self.seq1(s_next).to('cuda:1')

```
s_prev = self.seq2(s_prev)
ret.append(self.fc(s_prev.view(s_prev.size(0), -1)))
```

return torch.cat(ret)

Pytorch launches the GPUs asynchronously so that we can have self.seq2(s_prev) and self.seq1(s_next) run concurrently with different micro-batches of data.

Implementation Example: pippy, example codes, example_with_llama PiPPy consists of two parts: a compiler and a runtime.

- The compiler takes your model code, splits it up, and transforms it into a **Pipe**
- The runtime executes the **PipelineStages** in parallel, handling things like micro-batch splitting, scheduling, communication, and gradient propagation

```
class MyNetworkBlock(torch.nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.lin = torch.nn.Linear(in_dim, out_dim)
```

```
def forward(self, x):
    x = self.lin(x)
    x = torch.relu(x)
    return x
```

```
class MyNetwork(torch.nn.Module):
```

```
def __init__(self, in_dim, layer_dims):
    super().__init__()
```

prev_dim = in_dim
for i, dim in enumerate(layer_dims):
 setattr(self, f'layer{i}', MyNetworkBlock(prev_dim, dim))
 prev_dim = dim

self.num_layers = len(layer_dims)
10 output classes
self.output_proj = torch.nn.Linear(layer_dims[-1], 10)

```
def forward(self, x):
    for i in range(self.num_layers):
        x = getattr(self, f'layer{i}')(x)
```

return self.output_proj(x)

in_dim = 512
layer_dims = [512, 1024, 256]
mn = MyNetwork(in_dim, layer_dims).to(device)

Implementation Example: pippy, example codes, example_with_llama PiPPy consists of two parts: a compiler and a runtime.

```
.....
GraphModule(
 (submod 0): PipeStageModule(
   (L_self__layer0_mod_lin): Linear(in_features=512, out_features=512, bias=True)
  (submod_1): PipeStageModule(
   (L__self___layer1_mod_lin): Linear(in_features=512, out_features=1024, bias=True)
  (submod_2): PipeStageModule(
   (L_self_layer2_lin): Linear(in_features=1024, out_features=256, bias=True)
   (L self output proj): Linear(in features=256, out features=10, bias=True)
def forward(self, arg0):
   submod_0 = self.submod_0(arg0); arg0 = None
   submod_1 = self.submod_1(submod_0); submod_0 = None
   submod_2 = self.submod_2(submod_1); submod_1 = None
   return [submod 2]
.....
```

Implementation Example: pippy, example codes, example with Ilama PiPPy consists of two parts: a compiler and a runtime.

```
# We are using `torchrun` to run this example with multiple processes.
# `torchrun` defines two environment variables: `RANK` and `WORLD_SIZE`.
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
```

```
# Initialize distributed environment
import torch.distributed as dist
dist.init_process_group(rank=rank, world_size=world_size)
```

Pipeline stage is our main pipeline runtime. It takes in the pipe object, # the rank of this process, and the device. from pippy.PipelineStage import PipelineStage stage = PipelineStage(pipe, rank, device)

```
# Input data
x = torch.randn(batch_size, in_dim, device=device)
# Run the pipeline with input `x`. Divide the batch into 4 micro-batches
# and run them in parallel on the pipeline
if rank == 0:
    stage(x)
elif rank == world_size - 1:
    output = stage()
else:
    stage()
```

Implementation Example: pippy, example codes, example_with_llama PiPPy consists of two parts: a compiler and a runtime.

```
def forward(self, *args, **kwargs):
    # Clean per iteration
    self.clear runtime states()
```

```
# Split inputs into chunks
self.split_inputs(args, kwargs)
```

```
# Forward pass of all chunks
for chunk in range(self.chunks):
    self.forward_one_chunk(chunk)
    logger.debug(f"[{self.group_rank}]
Forwarded chunk {chunk}")
```

```
# Backward starts here
for bwd_chunk in range(self.chunks):
    self.backward_one_chunk(bwd_chunk)
    logger.debug(f"[{self.group_rank}]
Backwarded chunk {bwd_chunk}")
```

```
# Wait for all sends to finish
for work in self.all_act_send_reqs:
    work.wait()
```

```
# Wait for all sends to finish
for work in self.all_grad_send_reqs:
    work.wait()
```

Last rank return merged results per original
format
if self.is_last():
 return self.merge_output_chunks()
else:
 return None

GPipe Performance

Normalized training throughput using Gpipe with different # of partitions *K* and different # of micro-batches *M* on TPUs and GPUs without high-speed interconnect.

TPU	A	moebaN	let	Tr	ansform	ner	•	GPU	А	moeba	ıNet	Tı	ansfor	mer
K =	2	4	8	2	4	8	-	K =	2	4	8	2	4	8
M = 1	-			-			-	M = 32	1	1.7	2.7	1	1.8	3.3
M = 4	1.07	1.26	1.72	1.7	3.2	4.8								
M = 32	1.21	21 1.84 3.48			3.4	6.3								

Gradient Checkpointing

Re-materialization

- Forward pass: each accelerator only stores output activations
- Backward pass: the k-th accelerator recomputes the composite forward function F_k

Vanilla backprop

- Memory for activations: O(n)
- Node computation: O(n)

Memory poor backprop

- Memory for activations: O(1)
- Node computation: O(n²)

Gradient Checkpointing

Gradient checkpoint

- Cash the activations of every sqrt(n) layers
- Memory for activations: *O(n)*
- Node computation: O(sqrt(n) * sqrt(n)) = O(n)

Standard Pipeline Model Parallel

Device 1	1	2	3	4	5	6	7	8							1	2	3	4	5	6	7	8	9	10)11	12	213	314	15	16					
Device 2		1	2	3	4	5	6	7	8					1	2	3	4	5	6	7	8		Г	9	10	11	12	213	814	15	16				
Device 3			1	2	3	4	5	6	7	8			1	2	3	4	5	6	7	8			T		9	10	011	12	213	14	15 ⁻	16			9
Device 4				1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8				T			9	10)11	12	13	141	1516	9	-	10
Time —			•																		Dev	ice	s i	dle	è										

Forward Pass

Backward Pass

number of micro-batches in a batch: m

number of pipeline stages (number of devices used for pp): p

ideal time per iteration: t_{id} , forward pass for single micro-batch: t_f , backward pass: t_b

bubble time fraction (pipeline bubble size):
$$\frac{t_{pb}}{t_{id}} = \frac{(p-1) \cdot (t_f + t_b)}{m \cdot (t_f + t_b)} = \frac{p-1}{m}$$

PipeDream-Flush

• PipeDream-Flush – start backward as soon as possible

Device 1	1	2	3 4	4							1	5	2	2	6	3	7		4	8	5	5		6		7	,	l	8	9	10	11	12						l	9		10
Device 2		1	2	3	4			Г	1			2	5	3	(5	4	7		5	8	6			7		8		Ι	Γ	9	10	11	12	2			9	٦	1	0	
Device 3			1 2	2	3	4	1			2		3	3	5	4	6	ť	5	7	(6	8	7		8	3		Γ		I		9	10	11	12	4	9	13	10		11	
Device 4			·	1	1		2	2	3		3	4	4	1	5	5	6		6	7	7	,	8	8						I			9		9	10	1(0	11	11	12	12
Time —		_	*																						-	-				Γ												

Interleaved Pipeline Parallel

• Schedule with Interleaved Stages

number of micro-batches in a batch: *m*

number of pipeline stages (number of devices used for pp): p

model chunk: v , pipeline bubble time:
$$t_{pb}^{\text{int.}} = \frac{(p-1) \cdot (t_f + t_b)}{v}$$

bubble time fraction (pipeline bubble size):

$$\frac{t_{pb}^{\text{int.}}}{t_{id}} = \frac{1}{v} \cdot \frac{p}{m}$$

int

20

is equivalent to

Tensor Parallelism for Self-Attention

Tensor Parallelism - Embeddings

- Input embedding
 - Split over columns $E = [E_1, E_2]$ (column-wise)
 - all-reduce is required
- Output embedding
 - Split over columns GEMM $[Y_1, Y_2] = [XE_1, XE_2]$
 - Fuse outputs with crossentropy loss (huge reduction in communication)
 - all-gather is needed

- Layer normalization, dropout, residual connections
 - Duplicate across GPUs

• Each model parallel worker optimizes its own set of parameters

Combination of Pipeline and Tensor Model Parallelism

Combination of Pipeline and Tensor Model Parallelism

• Takeaway #1: When considering different forms of model parallelism, tensor model parallelism should generally be used up to degree *g* when using *g*-GPU servers, and then pipeline model parallelism can be used to scale up to larger models across servers

Figure 13: Throughput per GPU of various parallel configurations that combine pipeline and tensor model parallelism using a GPT model with 162.2 billion parameters and 64 A100 GPUs.

Combination of Pipeline and Tensor Model Parallelism

• Takeaway #1: When considering different forms of model parallelism, tensor model parallelism should generally be used up to degree *g* when using *g*-GPU servers, and then pipeline model parallelism can be used to scale up to larger models across servers

Figure 13: Throughput per GPU of various parallel configurations that combine pipeline and tensor model parallelism using a GPT model with 162.2 billion parameters and 64 A100 GPUs.

Model Parallel + Data Parallel

• Takeaway #2: When using data and model parallelism, a total model-parallel size of $M = t \cdot p$ should be used so that the model's parameters and intermediate metadata fit in GPU memory; data parallelism can be used to scale up training to more GPUs.

Figure 6: Fraction of time spent idling due to pipeline flush (pipeline bubble size) versus data-parallel size (d), for different numbers of GPUs (n) and ratio of batch size to microbatch size (b' = B/b).

Summary

Pipeline Parallelism

o split by layers (horizonal split)
o eliminate the bubbles (idle)
o interleaving forward/backward

Tensor Parallelism
 o split the matrix computation

Next

• Walkthrough of HW2 solutions