
11868 LLM Systems
Distributed GPU Training

Lei Li

1

• Model Parallel

• Pipeline Parallelism

• Tensor Parallelism

2

Today’s Topic

3

Model Parallel
Motivation: The size of models increases exponentially fast and
large. It is no longer possible to fit these large models into the
main memory of a single GPU.

4

Model Parallel
Model Parallel: memory usage and computation of a model is
distributed across multiple workers.
• Distributed over layer-wise computation • Distributed over tensor computation

5

Pipeline Parallelism
Naïve Model Parallel: The model is distributed across multiple GPUs
over layers.

Any disadvantage?
all but one GPU is idle at any given moment!

6

Pipeline Parallelism
Naïve Model Parallel: The model is distributed across multiple
GPUs over layers within one single node.

device0

device1

nccl send/recv

• GPipe: Divides input data mini-batches into smaller
micro-batches.

7

Pipeline Parallel

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

8

Pipeline Parallelism
GPipe: Divides input data mini-batches into smaller micro-batches.

(i) the number of model partitions K
(ii) the number of micro-batches M
(iii) the sequence and definitions of L layers that define the model

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).

9

Pipeline Parallelism
GPipe: Divides input mini-batches into smaller micro-batches.
During backward, recomputes forward

Bubble overhead: could be negligible when
Communication overhead: transfer activation tensors at the partition boundaries
Peak activation memory: ->

10

Pipeline Parallelism
Pipeline Parallel: Split the inputs to reduce bubbles within one
single node.

Pytorch launches the GPUs asynchronously so that we can have
self.seq2(s_prev) and self.seq1(s_next) run
concurrently with different micro-batches of data.

11

Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime.

• The compiler takes your model code, splits it
up, and transforms it into a Pipe
• The runtime executes the PipelineStages
in parallel, handling things like micro-batch
splitting, scheduling, communication, and
gradient propagation

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py

12

Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime.

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py

13

Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime.

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py

14

Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime.

def forward(self, *args, **kwargs):
 # Clean per iteration
 self.clear_runtime_states()

 # Split inputs into chunks
 self.split_inputs(args, kwargs)

 # Forward pass of all chunks
 for chunk in range(self.chunks):
 self.forward_one_chunk(chunk)
 logger.debug(f"[{self.group_rank}]
Forwarded chunk {chunk}")

 # Backward starts here
 for bwd_chunk in range(self.chunks):
 self.backward_one_chunk(bwd_chunk)
 logger.debug(f"[{self.group_rank}]
Backwarded chunk {bwd_chunk}")

Wait for all sends to finish
for work in self.all_act_send_reqs:
 work.wait()

Wait for all sends to finish
for work in self.all_grad_send_reqs:
 work.wait()

Last rank return merged results per original
format
if self.is_last():
 return self.merge_output_chunks()
else:
 return None

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py

15

GPipe Performance
Normalized training throughput using Gpipe with different # of partitions K and different # of
micro-batches M on TPUs and GPUs without high-speed interconnect.

16

Gradient Checkpointing
Re-materialization
• Forward pass: each accelerator only stores output activations
• Backward pass: the k–th accelerator recomputes the composite forward function Fk

Vanilla backprop Memory poor backprop

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).
[2] https://github.com/cybertronai/gradient-checkpointing

§ Memory for activations: O(n)
§ Node computation: O(n)

§ Memory for activations: O(1)
§ Node computation: O(n2)

https://github.com/cybertronai/gradient-checkpointing

17

Gradient Checkpointing
Gradient checkpoint
• Cash the activations of every sqrt(n) layers

• Memory for activations: O(n)

• Node computation: O(sqrt(n) * sqrt(n)) = O(n)

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).
[2] https://github.com/cybertronai/gradient-checkpointing

https://github.com/cybertronai/gradient-checkpointing

18

Standard Pipeline Model Parallel

number of micro-batches in a batch: m
number of pipeline stages (number of devices used for pp): p
ideal time per iteration: tid , forward pass for single micro-batch: tf , backward pass: tb

bubble time fraction (pipeline bubble size):

19

PipeDream-Flush
• PipeDream-Flush – start backward as soon as possible

number of micro-batches in a batch: m
number of pipeline stages (number of devices used for pp): p

model chunk: v , pipeline bubble time:

bubble time fraction (pipeline bubble size):
20

Interleaved Pipeline Parallel
• Schedule with Interleaved Stages

Tensor Parallelism

21

22

Tensor Parallelism

23

Tensor Parallelism

All-reduce is needed！

24

Tensor Parallelism

All-reduce is not needed！

25

Tensor Parallelism for Self-Attention

• Split weights over columns (heads)
• All-reduce is not needed！

• Input embedding
• Split over columns

• all-reduce is required

• Output embedding
• Split over columns

• Fuse outputs with cross-
entropy loss (huge reduction
in communication)

• all-gather is needed

26

Tensor Parallelism - Embeddings

• Layer normalization, dropout, residual
connections
• Duplicate across GPUs

• Each model parallel worker optimizes its own
set of parameters

27

Tensor Parallelism

28

Combination of Pipeline and Tensor
Model Parallelism

29

• Takeaway #1: When considering different forms of model parallelism, tensor model
parallelism should generally be used up to degree 𝑔 when using 𝑔-GPU servers, and then
pipeline model parallelism can be used to scale up to larger models across servers

Combination of Pipeline and Tensor
Model Parallelism

30

• Takeaway #1: When considering different forms of model parallelism, tensor model
parallelism should generally be used up to degree 𝑔 when using 𝑔-GPU servers, and then
pipeline model parallelism can be used to scale up to larger models across servers

Combination of Pipeline and Tensor
Model Parallelism

31

• Takeaway #2: When using data and model parallelism, a total model-parallel size of 𝑀 = 𝑡 ·
𝑝 should be used so that the model’s parameters and intermediate metadata fit in GPU
memory; data parallelism can be used to scale up training to more GPUs.

Model Parallel + Data Parallel

• Pipeline Parallelism
o split by layers (horizonal split)
o eliminate the bubbles (idle)
o interleaving forward/backward

• Tensor Parallelism
o split the matrix computation

34

Summary

• Walkthrough of HW2 solutions

35

Next

