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• Model Parallel 

• Pipeline Parallelism

• Tensor Parallelism

2

Today’s Topic
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Model Parallel
Motivation: The size of models increases exponentially fast and 
large. It is no longer possible to fit these large models into the 
main memory of a single GPU. 
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Model Parallel
Model Parallel: memory usage and computation of a model is 
distributed across multiple workers.
• Distributed over layer-wise computation • Distributed over tensor computation
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Pipeline Parallelism
Naïve Model Parallel: The model is distributed across multiple GPUs 
over layers. 

Any disadvantage?
all but one GPU is idle at any given moment!
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Pipeline Parallelism
Naïve Model Parallel: The model is distributed across multiple 
GPUs over layers within one single node.

device0

device1

nccl send/recv



• GPipe: Divides input data mini-batches into smaller 
micro-batches.
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Pipeline Parallel

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).
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Pipeline Parallelism
GPipe: Divides input data mini-batches into smaller micro-batches.

(i) the number of model partitions K
(ii) the number of micro-batches M
(iii) the sequence and definitions of L layers that define the model

[1] Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline parallelism." Advances in neural information processing systems 32 (2019).
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Pipeline Parallelism
GPipe: Divides input mini-batches into smaller micro-batches.
During backward, recomputes forward 

Bubble overhead:                   could be negligible when
Communication overhead: transfer activation tensors at the partition boundaries
Peak activation memory:                  ->  
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Pipeline Parallelism
Pipeline Parallel: Split the inputs to reduce bubbles within one 
single node.

Pytorch launches the GPUs asynchronously so that we can have 
self.seq2(s_prev) and self.seq1(s_next) run 
concurrently with different micro-batches of data.
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Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime.

• The compiler takes your model code, splits it 
up, and transforms it into a Pipe 
• The runtime executes the PipelineStages 
in parallel, handling things like micro-batch 
splitting, scheduling, communication, and 
gradient propagation

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py
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Pipeline Parallelism
Implementation Example: pippy, example codes, example_with_llama
PiPPy consists of two parts: a compiler and a runtime. 

def forward(self, *args, **kwargs):
    # Clean per iteration
    self.clear_runtime_states()

    # Split inputs into chunks
    self.split_inputs(args, kwargs)

    # Forward pass of all chunks
    for chunk in range(self.chunks):
        self.forward_one_chunk(chunk)
        logger.debug(f"[{self.group_rank}] 
Forwarded chunk {chunk}")

    # Backward starts here
    for bwd_chunk in range(self.chunks):
        self.backward_one_chunk(bwd_chunk)
        logger.debug(f"[{self.group_rank}] 
Backwarded chunk {bwd_chunk}")

# Wait for all sends to finish
for work in self.all_act_send_reqs:
    work.wait()

# Wait for all sends to finish
for work in self.all_grad_send_reqs:
    work.wait()

# Last rank return merged results per original 
format
if self.is_last():
    return self.merge_output_chunks()
else:
    return None

https://github.com/pytorch/PiPPy
https://github.com/pytorch/PiPPy/blob/main/examples/basic/example.py
https://github.com/pytorch/PiPPy/blob/main/examples/llama/pippy_llama.py
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GPipe Performance
Normalized training throughput using Gpipe with different # of partitions K and different # of 
micro-batches M on TPUs and GPUs without high-speed interconnect.
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Gradient Checkpointing
Re-materialization
• Forward pass: each accelerator only stores output activations
• Backward pass: the k–th accelerator recomputes the composite forward function Fk

Vanilla backprop                                                         Memory poor backprop

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).
[2] https://github.com/cybertronai/gradient-checkpointing

§ Memory for activations: O(n)
§ Node computation: O(n)

§ Memory for activations: O(1)
§ Node computation: O(n2)

https://github.com/cybertronai/gradient-checkpointing
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Gradient Checkpointing
Gradient checkpoint
• Cash the activations of every sqrt(n) layers

• Memory for activations: O(n)

• Node computation: O(sqrt(n) * sqrt(n)) = O(n)

[1] Chen, Tianqi, et al. "Training deep nets with sublinear memory cost." arXiv preprint arXiv:1604.06174 (2016).
[2] https://github.com/cybertronai/gradient-checkpointing

https://github.com/cybertronai/gradient-checkpointing
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Standard Pipeline Model Parallel

number of micro-batches in a batch: m
number of pipeline stages (number of devices used for pp): p
ideal time per iteration: tid , forward pass for single micro-batch: tf , backward pass: tb

bubble time fraction (pipeline bubble size):
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PipeDream-Flush
• PipeDream-Flush – start backward as soon as possible



number of micro-batches in a batch: m
number of pipeline stages (number of devices used for pp): p

model chunk: v , pipeline bubble time: 

bubble time fraction (pipeline bubble size):  
20

Interleaved Pipeline Parallel
• Schedule with Interleaved Stages



Tensor Parallelism
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Tensor Parallelism
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Tensor Parallelism

All-reduce is needed！
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Tensor Parallelism

All-reduce is not needed！
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Tensor Parallelism for Self-Attention

• Split weights over columns (heads)
• All-reduce is not needed！



• Input embedding
• Split over columns

• all-reduce is required

• Output embedding
• Split over columns

• Fuse outputs with cross-
entropy loss (huge reduction 
in communication)

• all-gather is needed
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Tensor Parallelism - Embeddings



• Layer normalization, dropout, residual 
connections
• Duplicate across GPUs

• Each model parallel worker optimizes its own 
set of parameters
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Tensor Parallelism
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Combination of Pipeline and Tensor 
Model Parallelism
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• Takeaway #1: When considering different forms of model parallelism, tensor model 
parallelism should generally be used up to degree 𝑔 when using 𝑔-GPU servers, and then 
pipeline model parallelism can be used to scale up to larger models across servers

Combination of Pipeline and Tensor 
Model Parallelism
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• Takeaway #2: When using data and model parallelism, a total model-parallel size of 𝑀 = 𝑡 · 
𝑝 should be used so that the model’s parameters and intermediate metadata fit in GPU 
memory; data parallelism can be used to scale up training to more GPUs.

Model Parallel + Data Parallel



• Pipeline Parallelism
o split by layers (horizonal split) 
o eliminate the bubbles (idle)
o interleaving forward/backward

• Tensor Parallelism
o split the matrix computation
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Summary



• Walkthrough of HW2 solutions
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Next


