11868 LLM Systems Pre-trained LLMs

Lei Li

Carnegie Mellon University Language Technologies Institute

Recap

- Sequence-to-sequence encoder-decoder framework for conditional generation, including Machine Translation
- Key components in Transformer

 Positional Embedding (to distinguish tokens at different pos)
 Multihead attention
 Residual connection
 layer norm

Today's Topic

- LLaMA
- GPT3
- How to build a vocabulary

o how to break sentence into sequence of units?

T5

- Model Architecture
 - Standard encoder-decoder Transformer
 - Decoding: beam search
 - Beam width=4, length penalty=0.6

• Model Size

- o T5-base: 220 million parameters
 - 12 blocks, $d_{ff} = 3072$, $d_{kv} = 64$, 12-headed attention, $d_{model} = 768$

o T5-3B

- \bullet 24 blocks, d_{model} = 1024 , d_{kv} = 128, d_{ff} = 16384, 32-headed attention
- o T5-11B
 - 24 blocks, $d_{model} = 1024$, $d_{kv} = 128$, $d_{ff} = 65536$, 128-headed attention

T5

• Training Strategy

Multi-task pretraining + fine-tuning
 In text-to-text, multi-task learning corresponds to mixing datasets.

• Unsupervised Objective

 Span-corruption: A mean span length of 3 and corrupt 15% of the original sequence

LLaMA

- Model Architecture: Based on Transformer decoder, with a few improvements:
 - o Pre-normalization [GPT3]
 - SwiGLU activation function [PaLM]: Swish-Gated Linear Unit
 - Rotary Embeddings [GPTNeo]

pre Layer Normalization

7

FFN with SwiGLU

Swish activation

FFN with ReLU $FFN(x) = max(0, x \cdot W_1 + b_1) \cdot W_2 + b_2$ dim=4d

FFN with SwiGLU

 $FFN_{SwiGLU}(x)$ $= (Swish(x \cdot W_1 + b_1) \odot (W_2 + b_2))$ $\cdot W_3 + b_2$ dim=2/3 * 4d

Rotary Embedding (RoPE)

$$f(x_{m},m) = \begin{pmatrix} \cos(m\theta_{1}) & -\sin(m\theta_{1}) \\ \sin(m\theta_{1}) & \cos(m\theta_{1}) \\ & & \cos(m\theta_{2}) & -\sin(m\theta_{2}) \\ & & & \sin(m\theta_{2}) & \cos(m\theta_{2}) \end{pmatrix} \begin{pmatrix} x_{m,1} \\ x_{m,2} \\ x_{m,3} \\ x_{m,4} \end{pmatrix}$$

$$f(x_m, m)^T \cdot f(x_n, n) = x_m^T R_{n-m} x_n$$

Su et al. RoFormer: Enhanced Transformer with Rotary Position Embedding 2021.

• Model Size

params	dimension	n heads	n layers	learning rate	batch size	n tokens
6.7B	4096	32	32	$3.0e^{-4}$	4M	1.0T
13.0B	5120	40	40	$3.0e^{-4}$	4M	1.0T
32.5B	6656	52	60	$1.5e^{-4}$	4M	1.4T
65.2B	8192	64	80	$1.5e^{-4}$	4M	1.4T

LLaMA

• Training Strategy

 Trained with the standard language modeling loss function: the average log probability of all tokens without label smoothing
 Auxiliary loss to encourage the softmax normalizer to be close to 0

Pre-training Details
 O Using only open-source data

Dataset	Sampling prop.	Epochs	Disk size
CommonCraw	l 67.0%	1.10	3.3 TB
C4	15.0%	1.06	783 GB
Github	4.5%	0.64	328 GB
Wikipedia	4.5%	2.45	83 GB
Books	4.5%	2.23	85 GB
ArXiv	2.5%	1.06	92 GB
StackExchange	e 2.0%	1.03	78 GB

GPT3

- Model Architecture
 - Based on the standard Transformer architecture
 - o With modified initialization, pre-normalization, and reversible tokenization
 - Alternating dense and locally banded sparse attention patterns

GPT3

• Model Size

Model Name	$n_{\rm params}$	$n_{\rm layers}$	$d_{ m model}$	$n_{\rm heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes 10^{-4}$

Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

GPT3

- Training Strategy

 Unsupervised Pre-training
- Training Details

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Computation

Total Compute Used During Training

Code Go-through

https://nlp.seas.harvard.edu/annotated-transformer/

https://belladoreai.github.io/llama-tokenizer-js/exampledemo/build/

Reading for Next Class

- Neural Machine Translation of Rare Words with Subword Units. Sennrich et al. 2016.
- SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. Kudo and Richardson. 2018