
11868 LLM Systems
Auto Differentiation

Lei Li

1

• Operators needed for Neural network

• GPU Architecture overview
oGPU à SMs -> partitions
o data transfer bandwidth

• Basic CUDA operations
o lauch kernels as a grid of blocks of threads

• Matrix/Tensor Computation on GPU
2

Recap

• Learning algorithm for Neural Network

• Computation Graph

• Auto Differentiation

• Gradient checking

3

Today’s Topic

• Layers in FFN
o Embedding (lookup table)
o Linear
o Relu
o Softmax

4

A Simple Feedforward Neural Network

Linear

Relu

Linear

Softmax

Embedding

It is a good movie

• Cross entropy

ℒ(𝜃) =
1
𝑁
∑
!"#

$
− log𝑓(𝑥!)%!

• Pytorch CrossEntropyLoss is implemented as
oNegative Likelihood on Log(Softmax(h))
o Should pass logit (linear before softmax) as input

5

Loss for Classification

• Given a training set of input-output pairs 𝐷
= {(𝑥!, 𝑦!)}!"#$

o 𝑥" and 𝑦" may both be vectors

• To find the model parameters such that the model
produces the most accurate output for each
training input
o Or a close approximation of it

• Learning the parameter of a neural network is an
instance!
o The network architecture is given

6

The Learning Problem

𝑦

𝑿

• Consider a generic function minimization problem, where x is
unknown variable

min 𝑓(𝑥)
#

	 where	𝑓: ℝ$ → ℝ

• Iterative update algorithm
𝑥%&' ← 𝑥% + Δ

• so that 𝑓(𝑥%&') ≪ 𝑓(𝑥%)

• How to find Δ
7

Generic Iterative Algorithm

• 𝑓(𝑥! + Δ𝑥) ≈ 𝑓(𝑥!) + Δ𝑥"𝛻𝑓|#&

• To make Δ𝑥"𝛻𝑓|#& 	smallest
o ⇒ Δ𝑥 in	the	opposite	direction	of	𝛻𝑓|!!i.e.Δ𝑥 = −𝛻𝑓|!!

• Update rule: 𝑥!$% = 𝑥! − 𝜂𝛻𝑓|#&

• 𝜂 is a hyper-parameter to control the learning rate

8

Gradient Descent

set learning rate eta.
1.set initial parameter 𝜃 ← 𝜃!
2.for epoch = 1 to maxEpoch or until converg:
3. for each batch in the data:
4. total_g = 0
5. for each data (x, y) in data batch:
6. compute error err(f(x; 𝜃) - y)
7. compute gradient 𝑔 = "#$$(&)

"&
8. total_g += g
9. update 𝜃 = 𝜃 - eta * total_g / N

9

(Stochastic) Gradient Descent Algorithm

• Goal: '(
')#

• Forward computation

• Backpropogation

10

How to compute the gradient for every
parameter?

Linear

Relu

Linear

Softmax

Embedding

It is a good movie

• Each node denotes a variable or an operation

• Directed edges to connect nodes, indicating the input
values for operations.

11

Computation Graph

𝑥! ℎ" ℎ#

𝑤!

*
relu(.) ℎ$

𝑤"

*
𝑜%

𝑦!

CEloss

12

𝑥!

𝑥#

𝑥%

1.5

*

+

𝑥&

exp(.)

𝑥'

𝑥"

𝑥$

2.0

*

+

f = x1 + exp(1.5 * x1 + 2.0 * x2)
Computation:
1. Topological sorting of all

nodes
2. Calculate the value for

each node given its input

x1= 3, x2=0.5

• Most autodiff systems, including Pytorch/Autograd,
explicitly construct the computation graph.

• TensorFlow provide mini-languages for building
computation graphs directly.

• Disadvantage: need to learn a totally new API.

• Autograd (JAX) instead builds them by tracing the forward
pass computation (similar to numpy).

13

Building Computation Graph

• Node class, with attributes
o value: the actual value computed on a particular set of inputs
o fun: the primitive operation defining the node
o args and kwargs: the arguments the op was called with
o parents: the parent Nodes

14

Implementation

https://github.com/mattjj/autodidact

• Autograd’s NumPy module provides primitive ops which
look and feel like NumPy functions, but secretly build the
computation graph.

15

Wrapper around Numpy

• To learn a neural network, we need gradient of loss function
w.r.t. parameters.

• Parameters are also variables, and represented as nodes in
the computation graph.

• Chain rule => backpropogation
𝑑𝑦(𝑧)
𝑑𝑥

=
𝑑𝑦(𝑧)
𝑑𝑧

0
𝑑𝑧
𝑑𝑥

16

Gradient Calculation

17

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives '%
'*#

Define /𝑥+ =
'%
'*#

x1= 3, x2=0.5

𝑥!

𝑥#

𝑥%

𝑤!
= 1.5

*

+

𝑥&

exp(.)

𝑥'

𝑥"

𝑥$

𝑤"
= 2.0

*

+

18

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives '%
'*#

Define /𝑥+ =
'%
'*#
𝑥, = 1
𝑥- = 1

𝑥. =
𝜕𝑦
𝜕𝑥-

2
𝜕𝑥-
𝜕𝑥.

= 𝑥- 2 exp(𝑥.)

𝑥/ =
𝜕𝑦
𝜕𝑥.

2
𝜕𝑥.
𝜕𝑥/

= 𝑥.

𝑥0 =
𝜕𝑦
𝜕𝑥.

2
𝜕𝑥.
𝜕𝑥0

= 𝑥.

𝑤1 =
𝜕𝑦
𝜕𝑥/

2
𝜕𝑥/
𝜕𝑤1

= 𝑥/ 2 𝑥1

x1= 3, x2=0.5

𝑥!

𝑥#

𝑥%

𝑤!
= 1.5

*

+

𝑥&

exp(.)

𝑥'

𝑥"

𝑥$

𝑤"
= 2.0

*

+

19

𝑦 𝑧

𝑥 �̅� = 8𝑦 2
𝜕𝑦
𝜕𝑥

+ ̅𝑧 2
𝜕𝑧
𝜕𝑥

…

Jacobian

𝐽 =
𝜕𝑦
𝜕𝑥

=

𝜕𝑦#
𝜕𝑥#

𝜕𝑦#
𝜕𝑥1

𝜕𝑦1
𝜕𝑥#

𝜕𝑦1
𝜕𝑥1

20

Partial derivatives for Vectors

𝐽 =
𝜕𝑦
𝜕𝑥

=

𝜕𝑦#
𝜕𝑥#

𝜕𝑦#
𝜕𝑥1

𝜕𝑦1
𝜕𝑥#

𝜕𝑦1
𝜕𝑥1

• computing the partial derivative for each node (vector)
�̅� = 𝐽2 8𝑦

21

Vector Jacobian Product

𝑦 = 𝑊𝑥
�̅� = 𝑊2 8𝑦

22

Example

• For each primitive operation, we must specify VJPs for
each of its arguments.

• defvjp (defined in core.py) is a convenience routine for
registering VJPs.

 defvjp(anp.exp, lambda g, ans, x: ans * g)

23

Implementing Vector-Jacobian Product

• Instead of explicitly computing the derivatives (gradients) for
each data sample following the backward direction

• Construct a computation graph for gradient calculation for
every node

• Applicable to any input data (and output=loss)

24

Auto Differentiation

25

y=x1 + exp(1.5 * x1 + 2.0 * x2) Computing the derivatives '%
'*#

Define /𝑥+ =
'%
'*#

x1= 3, x2=0.5

𝑥!

𝑥#

𝑥%

𝑤!
= 1.5

*

+

𝑥&

exp(.)

𝑥'

𝑥"

𝑥$

𝑤"
= 2.0

*

+

26

y=x1 + exp(1.5 * x1 + 2.0 * x2)
x1= 3, x2=0.5

𝑥!

𝑥#

𝑥%

𝑤!
= 1.5

*

+

𝑥&

exp(.)

𝑥'

𝑥"

𝑥$

𝑤"
= 2.0

*

+
𝑥#
= 1

𝑥&

𝑥$

𝑥%

exp(.)

id

𝑥)→+ *

id

𝑤"*𝑥"
*

𝑥# id

𝑤!*𝑥!

𝑥,→- *
+

Exercise

27

𝑥!

𝑥"

𝑥$

𝑤

*

𝑥&

exp(.)

𝑥'

+
𝑥$
= 1

𝑥#

-

1/x

28

Implementing Backward Pass

29

Build the AutoDiff Graph

30

Use AutoGrad

• use finite differences to check our gradient calculations
𝜕𝑓(𝑥#, 𝑥1)

𝜕𝑥#
=
𝑓 𝑥# + ℎ, 𝑥1 − 𝑓(𝑥# − ℎ, 𝑥1)

2ℎ

• Care the precision!
oUse double precision (fp64)
o Pick a small ℎ = 0.000001
oCompute the forward difference through the graph twice

31

How to check the correctness of gradient

• Learning algorithm for Neural Network
o stochastic gradient descent

• Computation Graph
o topological traversal along the DAG

• Auto Differentiation
o building backward computation graph

• https://github.com/mattjj/autodidact/
32

Summary

• TensorFlow: A System for Large-Scale Machine Learning,
OSDI 2016.

33

Reading for Next Class

