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Retrieval-Augmented Generation for 
Knowledge-Intensive NLP Tasks

Zengliang Zhu, Yuchen Zhang, Jordan Peng



2
2
2

2

Outline

● Motivation
● Previous works: ORQA, REALM, kNN-LM
● Method
● Experiment
● Result
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Motivation : Memorization 

● Memorization makes 
NLG (Natural Language 
Generation) systems 
better.

● Especially in QA



4
4
4

4

Motivation : Memorization 

How?
Models gain memory during training.

● If there’s enough original text of Harry Potter in the training data, the 
model can recite it from memory.

 

Prompt Llama-7b-chat-hf

Harry Potter’s two best friends are Ron Weasley and Hermione Granger. In the 
series...

When Harry went back to class, he saw that his 
best friends,

Ron and Hermione, were already sitting at their 
desk, looking worried. ”What’s wrong?”...

Eldan, Ronen, and Mark Russinovich. "Who's Harry Potter? Approximate Unlearning in LLMs." 
arXiv preprint arXiv:2310.02238 (2023).
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Motivation : Memorization 

How?
Models gain memory during training.

● If there’s enough original text of Harry Potter in the training data, the 
model can recite it from memory.

 
“Parametric Memory” : inside of learned parameter
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Motivation : Memorization 

How?
Models gain memory during training.

● If there’s enough original text of Harry Potter in the training data, the 
model can recite it from memory.

 
“Parametric Memory” : inside of learned parameter

● Downside: 
○ Updating memory means updating training data and retraining.

               "Who is the US President up to 2024?"
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Motivation : Memorization 

How?
Models gain memory during training.

● If there’s enough original text of Harry Potter in the training data, the 
model can recite it from memory.

 
“Parametric Memory” : inside of learned parameter

● Downside: 
○ Updating memory means updating training data and retraining.
○ Black box: Can’t tell if the output is based on memorization or 

hallucination
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Motivation : Non-Parametric Memory 

How?
Retrieve external memory on the fly

Query Language Model 🔥
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Motivation : Non-Parametric Memory 

How?
Retrieve external memory on the fly
Previous works:

Retrieve without LM head: ORQA
Retrieval-augmentation during pre-training: REALM
Retrieval-augmentation after pre-training: kNN-LM, RAG (this work)
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Retrieve without LM head : ORQA[1]

[1] Lee, Kenton, Ming-Wei Chang, and Kristina Toutanova. "Latent retrieval for weakly supervised open domain 
question answering." arXiv preprint arXiv:1906.00300 (2019).

Reader model: span prediction
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Retrieve without LM head : ORQA[1]

When to retrieve:
Per question

What to retrieve:

chunk of 288 
tokens

[1] Lee, Kenton, Ming-Wei Chang, and Kristina Toutanova. "Latent retrieval for weakly supervised open domain 
question answering." arXiv preprint arXiv:1906.00300 (2019).
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Retrieve without LM head : ORQA

When to retrieve:
What to retrieve:

How to retrieve:
Calculate the 
product score of 
question and 
chunk embedding.

Rank the chunks, 
retrieve top-k.
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Retrieve without LM head : ORQA

When to retrieve:
What to retrieve:
How to retrieve:

After retrieving:
Train a BERT 
span-select model 
to predict the start 
and end indexes, 
indicating the 
substring that act 
as the answer.
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Retrieve without LM head: : ORQA

When to retrieve:
What to retrieve:
How to retrieve:
After retrieving:

How to train:
Pretrain block 
(context) encoder

Then train 
end-to-end using 
ground-truth label.
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Retrieve without LM head: : ORQA

● Pre-training task: Inverse Cloze Task

❏ Step 1:   Remove a sentence from a 
snippet

❏ Step 2:   Given the original snippet 
and wrong snippet, predict the 
snippet that is the true context
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Retrieve without LM head: : ORQA

● Fine-tuning goal: Maximize marginal probability
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Retrieve without LM head: : ORQA

● Fine-tuning goal: Maximize marginal probability
○ *Z: 

■ In theory: The entire corpus
■ In practice: top-k
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Retrieval-augmentation during pre-training : REALM [2]

When to retrieve:
Per question
What to retrieve:
chunk of 288 tokens
How to retrieve:
Calculate the product score of question and 
chunk embedding.

retrieve top-k using approximated Matrix 
Inner Product Search (MIPS) in sublinear 
time.

After retrieving:
Use a BERT span-select model to predict the 
start and end indexes, indicating the 
substring that act as the answer.

[2] Guu, Kelvin, et al. "Retrieval augmented language model pre-training." International conference on machine learning. PMLR, 
2020.
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When to retrieve:
What to retrieve:
How to retrieve:
After retrieving:

How to train:
Pretraining: 
Task – masked token prediction
Train retriever and reader together, using 
masked token prediction.

Fine-tuning: 
Task – span selection
Drop the final projection layer and add a MLP 
just like ORQA.

Retrieval-augmentation during pre-training : REALM [2]
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When to retrieve:
What to retrieve:
How to retrieve:
After retrieving:

How to train:
Pretraining: 
Task – masked token prediction
Train retriever and reader together, using 
masked token prediction.

Fine-tuning: 
Task – span selection
Drop the final projection layer and add a MLP 
just like ORQA.

Finetune end-to-end

Retrieval-augmentation during pre-training : REALM [2]
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Retrieval-augmentation after pre-training : kNN-LM[3]

When to retrieve:
Per output token (autoregressive)

[3] Khandelwal, Urvashi, et al. "Generalization through memorization: Nearest neighbor language models." arXiv preprint arXiv:1911.00172 (2019).
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What to retrieve:
• (Context, Target Word) pairs: (𝑐𝑖, 𝑣𝑖 )

Retrieval-augmentation after pre-training : kNN-LM[3]
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How to retrieve:
LM generates embedding for training contexts.
For each step, LM generates embedding for test context.
Use KNN to search nearest k training contexts.

Retrieval-augmentation after pre-training : kNN-LM[3]
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After retrieving:
Normalize and Interplot
𝑝 𝑦 = 𝜆𝑝knn 𝑦 + (1 − 𝜆 )𝑝lm(𝑦)

Retrieval-augmentation after pre-training : kNN-LM[3]
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How to train:
Standard pre-training.
Plug in new retrieval corpus without additional training.

Retrieval-augmentation after pre-training : kNN-LM[3]
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Improvement over prev. works
ORQA REALM kNN-LM RAG (this work)

Additional 
training needed

Yes Yes No No

Autoregressive? No No Yes Yes

Task Open domain 
QA

Open domain 
QA

Open domain 
QA

Open domain 
QA, 
Abstractive QA
, Question 
Generation

When to 
retrieve?

Per question Per question Per token Per question
/per token
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Methods
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Method Overview

1. Encode our query and all documents into features.
2. Match the top-k documents most similar to the query feature
3. Provide the top-k documents to the generator and marginalize
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RAG-Sequence Model: use the same retrieved document(s) to generate the complete sequence.
 

RAG-Token Model: allows different document(s) to be retrieved for generating each token.

RAG Models



30
30
30

30

RAG-Sequence Model: use the same retrieved document(s) to generate the complete sequence.
 

RAG-Token Model: allows different document(s) to be retrieved for generating each token.

RAG Models

Marginalization on 
sequence

Marginalization on token
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RAG-Sequence Model: use the same retrieved document(s) to generate the complete sequence.
 

RAG-Token Model: allows different document(s) to be retrieved for generating each token.

Approx.

RAG Models

Marginalization on 
sequence

Marginalization on tokenApprox.
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Architecture: Retriever

Query and Context source are encoded by separate BERT document encoders.

The encoded document index d(z) are referred as non-parametric memory.

Need to extract the top-k results: Maximum Inner Product Search problem.
- The author used FAISS(Facebook AI similarity search) combined with HNSW (Hierarchical 

Navigable Small World Approximation) to approximately solve the problem in sub-linear 
time.
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MIPS Problem - FAISS 

Quantization into coarse, fine level. Use coarse quantization result to limit the scope of 
computing similarity.

Asymmetric Distance Computation: compute distance between x and all quantized y. 

x

q(y0)

q(yL)

…

https://arxiv.org/pdf/1702.08734.pdf

https://arxiv.org/pdf/1702.08734.pdf
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MIPS Problem - FAISS 

IVFADC: reduce search range by grouping with q1(.)

Then proceed with the ADC computation. FIASS Indexes part of the compute on distance 
between x to quantized values for acceleration.

xy0

yL

…

…

y1 y3 y4 y7 …

y2 y5 y6

y0 y8 y9 …

…

C1 Groups

top-τ

y1 y3 y4 y7 …

https://arxiv.org/pdf/1702.08734.pdf

https://arxiv.org/pdf/1702.08734.pdf
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MIPS Problem - Hierarchical Navigable Small World Approximation 

Search: A pre-constructed hierarchical graph that greedly searches for the nearest neighbor to 
the query and proceed to the next layer until the last.

Construction: After inserting the nodes to layers, edges are connected to a fixed number of 
nearest neighbors within each layer. 
 

https://www.pinecone.io/learn/series/faiss/hnsw/https://www.pinecone.io/learn/series/faiss/hnsw/

https://www.pinecone.io/learn/series/faiss/hnsw/
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Architecture: Generator

Used BART-large as the generator architecture
400M parameters
 

Input x and retrieved documents z are concatenated to input to BART.
BART parameters θ referred as parametric memory.
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Training

Jointly trained the retriever and generator by minimizing the negative marginal log-likelihood of 
each target on input-output pairs (xi, yi)

x

Generator
(BART-large)

&
Marginalizatio

n

d(z)

qx

Retriever

(non-parametric)

z z1

zn

x

x

y
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Decoding

RAG-Token Model:
Can be treated as normal auto-regressive language model, decoded by a beam decoder with 
transition probability:

RAG-Sequence Model:
The conditional p(y|x) cannot break down to per-token transition probabilities. Therefore cannot 
use beam search directly. 
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Thorough Decoding - RAG Sequence Model

Run beam search for each retrieved document.

z1

x

zn

x

…

y1

y1

y2

y3

p(y1|x, z1)

p(y3|x, z1)

p(y1|x, zn)

p(y2|x, zn)
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Thorough Decoding - RAG Sequence Model

Some hypothesis may not appear in all beam search. Run additional forward for them: 

z1

x

zn

x

…

y1

y1

y2

y3

p(y1|x, z1)

p(y3|x, z1)

p(y1|x, zn)

p(y2|x, zn)

y2 p(y2|x, z1)

y3 p(y3|x, zn)
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Thorough Decoding - RAG Sequence Model

Marginalize hypothesis with weight on the document.

z1

x

zn

x

…

y1

y1

y2

y3

p(y1|x, z1)

y2

y3

p(z1)✖

p(y2|x, z1) p(z1)✖

p(y3|x, z1) p(z1)✖

p(y1|x, zn) p(zn)✖

p(y2|x, zn) p(zn)✖

p(y3|x, zn) p(zn)✖

y1

y2

y3
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Fast Decoding - RAG Sequence Model

When the number of hypothesis is large, is it costly to forward all distinct hypotheses.
Approximate p(y|x,z)=0 when y is not generated by document z during beam search

z1

x

zn

x

…

y1

y1

y2

y3

p(y1|x, z1)

p(y3|x, z1)

p(y1|x, zn)

p(y2|x, zn)

y2

y3
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Fast Decoding - RAG Sequence Model

When the number of hypothesis is large, is it costly to forward all distinct hypotheses.
Approximate p(y|x,z)=0 when y is not generated by document z during beam search

z1

x

zn

x

…

y1

y1

y2

y3

p(y1|x, z1)

p(y3|x, z1)

p(y1|x, zn)

p(y2|x, zn)

y2 0

y3 0



44
44
44

44

Experiments & Results
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Main Experiments

Open-domain Question Answering

Jeopardy Question Generation

Abstractive Question Answering

Fact Verification

Additional Results

Generation Diversity

Retrieval Ablations 

Index hot-swapping

Effect of Retrieving more documents
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Open-domain Question Answering

open-domain QA datasets: 
NQ: Natural Questions 
TQA: TriviaQA 
WQ: WebQuestions 
CT: CuratedTrec

Settings:
Closed-book: parametric-only
Open-book: retrieval-based

Why better performance:

Both REALM and DPR use a Reader model to extract answers from 
the retrieved documents.

What if there’s no correct answer in the documents?

RAG use a BART model as a generator to generate answers with the 
help from related documents.
RAG can generate correct answers when the related documents only 
have clues but not the  answer verbatim, or do not have correct 
answer at all.

Overview: Open-domain QA involves building systems that can answer 
questions on any topic without specific domain restrictions. These 
systems often use large-scale datasets and access a broad range of 
information sources to find answers.

Example:

● Question: "Who wrote 'Pride and Prejudice'?"
● Answer: "Jane Austen."
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Open-domain Question Answering

open-domain QA datasets: 
NQ: Natural Questions 
TQA: TriviaQA 
WQ: WebQuestions 
CT: CuratedTrec

Settings:
Closed-book: parametric-only
Open-book: retrieval-based

RAG combines the generation flexibility of the 
“closed-book” (parametric only) approaches and the 
performance of "open-book" retrieval-based 
approaches. 

REALM or T5+SSM:
“Salient span masking“: Mask entities instead of random masking.
A BERT-based tagger is used to identify named entities, which is 
time-consuming.

DPR:
DPR uses a BERT-based “crossencoder” to re-rank documents, 
along with an extractive reader.

RAG is more efficient.
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Jeopardy Question Generation (Jeopardy)
SotA are different model systems which produce best results in 
each tasks and use gold context/evidence

B-1: BLEU-1
QB-1: Q-BLEU-1
R-L: Rouge-L

Overview: This involves generating questions 
suitable for the game show Jeopardy, where the 
answers are given first, and the challenge is to form 
the corresponding question. It tests both the 
creativity and the informativeness of the generated 
question.

Example:

● Given: "This 19th-century British novelist 
wrote 'Oliver Twist' and 'A Christmas Carol.'"

● Question: "Who is Charles Dickens?"

New task using splits from SearchQA, with 100K 
train, 14K dev, and 27K test examples



49
49
49

49

Jeopardy Question Generation (Jeopardy)

Why RAG-Token perform best?

Different posterior when generating different tokens

RAG-Token can generate responses that combine content from several documents

Input: Hemingway
Output: “The Sun Also Rises” is a novel by this author of “A Farewell to Arms”
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Jeopardy Question Generation (Jeopardy)
This observation suggests that the generator can complete the titles without depending on specific documents.

BART model:
Given partial result: “The Sun”
Full Generation: "The Sun Also Rises" is a novel by this author of "The Sun Also Rises"
→ the title "The Sun Also Rises" is stored in BART’s parameters. 

Given partial result: "The Sun Also Rises" is a novel by this author of "A
Full Generation: "The Sun Also Rises" is a novel by this author of "A Farewell to Arms".
→ the title "A Farewell to Arms" and the authorship are stored in BART’s parameters.

RAG can generate the correct question 
→specific knowledge is stored in the parametric memory, and the non-parametric component helps to guide the generation.
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Jeopardy Question Generation (Jeopardy)

BART is more factual than RAG in only 7.1% of cases
RAG is more factual in 42.7% of cases

→ The effectiveness of RAG on the task over a state-of-the-art 
generation model

Evaluators also find RAG generations to be more specific by a large margin.

‘?’ indicates factually incorrect responses, * indicates partially correct responses.
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Abstractive Question Answering (MSMARCO)

SotA are different model systems which produce best results in 
each tasks and use gold context/evidence

B-1: BLEU-1
QB-1: Q-BLEU-1
R-L: Rouge-L

Overview: Unlike the typical QA that retrieves parts of text 
containing the answer, abstractive QA systems generate a 
concise, coherent response that may not directly quote the 
source materials. This requires deep understanding and 
reformulation of the information.

Example:

● Question: "Why is the sky blue?"
● Answer: "The sky appears blue because of the scattering 

of sunlight by the Earth's atmosphere, which is more 
effective at shorter wavelengths, such as blue."
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Abstractive Question Answering (MSMARCO)

SotA are different model systems which produce best results in 
each tasks and use gold context/evidence

B-1: BLEU-1
QB-1: Q-BLEU-1
R-L: Rouge-L

MSMARCO:The task consists of questions, ten gold passages 
retrieved from a search engine for each question, and a full 
sentence answer annotated from the retrieved passages. 

RAG do not use the supplied passages, only the questions and 
answers, to treat MSMARCO as an open-domain abstractive 
QA task.

RAG approaches state-of-the-art model performance.

1. SotA models access gold passages with specific information 
required to generate the reference answer.

2. many questions are unanswerable without the gold passages.

3. not all questions are answerable from Wikipedia alone.
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Fact Verification (FVR3 & FVR2)

Overview: Fact Verification systems check the truthfulness of a 
statement by cross-referencing it with credible sources. It's crucial in 
combating misinformation, especially on social media and other 
online platforms.

Example:

● Statement: "The capital of France is Paris."
● Classified as "True"

FEVER requires classifying whether a natural language claim is 
supported or refuted by Wikipedia, or whether there is not enough 
information to decide. 

RAG map FEVER class labels (supports, refutes, or not enough info) 
to single output tokens and directly train with claim-class pairs. 
RAG do not use supervision on retrieved evidence.

SotA are different model systems which produce best results in 
each tasks and use gold context/evidence

B-1: BLEU-1
QB-1: Q-BLEU-1
R-L: Rouge-L
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Fact Verification (FVR3 & FVR2)

3-way classification (supports, refutes, or not enough info): 
RAG scores are within 4.3% of state-of-the-art models.
2-way classification (supports, refutes):
RAG scores are within 2.7% of state-of-the-art models.
(RAG do not require supervision. RAG retrieve its own evidence.)

overlap in article titles between the top k documents retrieved by 
RAG and gold evidence annotations:
Top retrieved document is from a gold article in 71% of cases.
A gold article is present in the top 10 retrieved articles in 90% of 
cases.

This indicates the retriever can effectively retrieve the correct 
documents.

SotA are different model systems which produce best results in 
each tasks and use gold context/evidence

B-1: BLEU-1
QB-1: Q-BLEU-1
R-L: Rouge-L
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Additional Results
1. Generation Diversity Investigate generation diversity by calculating the ratio of distinct 

ngrams to total ngrams generated by different models.

RAG-Sequence’s generations are more diverse than RAG-Token’s, 
and both are significantly more diverse than BART without needing 
any diversity-promoting decoding.
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Additional Results
2. Retrieval Ablations

To assess the effectiveness of the retrieval mechanism, we run 
ablations where we freeze the retriever during training

RAG-BM25: replace RAG’s retriever with a fixed BM25 system
RAG-Frozen: Freeze the retriever during training

BM25, short for "Best Matching 25," is a ranking 
function used by search engines to estimate the 
relevance of documents to a given search query. 

It is part of a family of retrieval functions under the 
probabilistic retrieval model, and it's widely used due 
to its effectiveness and simplicity.

For FEVER, BM25 performs best, perhaps since FEVER 
claims are heavily entity-centric and thus well-suited for 
word overlap-based retrieval. Differentiable retrieval 
improves results on all other tasks, especially for 
Open-Domain QA, where it is crucial.
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Additional Results
3. Index hot-swapping

RAG: knowledge can be easily updated at test time.
Parametric-only models like T5 or BART: need further training to update their behavior as the world changes

Experiment:
build an index using the DrQA Wikipedia dump from December 2016 and December 2018
use a template “Who is {position}?” (e.g. “Who is the President of Peru?”) to query our NQ RAG model with each index

Results:
70% correctly using the 2016 index for 2016 world leaders and 68% using the 2018 index for 2018 world leaders
12% with the 2018 index and 2016 leaders, 4% with the 2016 index and 2018 leaders

Conclusion:
This shows we can update RAG’s world knowledge by simply replacing its non-parametric memory.
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Additional Results
4. Effect of Retrieving more documents

Observation:
Models are trained with either 5 or 10 retrieved latent documents, and RAG do not observe significant differences in 
performance between them

Experiment:
Adjust the number of retrieved documents at test time, which can affect performance and runtime

Results:
1. Left Figure: Retrieving more documents at test time monotonically improves Open-domain QA results for RAG-Sequence, 
but the performance peaks for RAG-Token at 10 retrieved documents. 
2. Center Figure: Retrieving more docume leads to a increasing recall for all models.
3. Right Figure: Retrieving more documents leads to higher Rouge-L for RAG-Token, but the effect is less pronounced for 
RAG-Sequence.
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Results Overview


