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Why Long-Context LLMs?

One of the primary limitations of transformers is their ability to operate on long sequences
of tokens.

For many applications of LLMs, overcoming this limitation is powerful.
e In Retrieval Augmented Generation (RAG), a longer context augments our model
with more information.
e For Long-term planning tasks, such as chatbots, longer context means more
capabilities.
o ... ™

Google recently release Gemini-Pro-1.5 which boasts a context length
of 1IM. One of the core tests for these large context length windows is

how effectively they can use the provided data in the context. 1M
context length amounts to around 20k lines of code (that's a lot of

codel). Feb 21,2024 Carnegie
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Challenges in Achieving Long-Context Transformer-based LLMs

1. Attention Complexity

e The length of an input sequence is limited by quadratic time & memory complexity
of attention.

2. Max-Length Constraint

e During training, determining the max-length is necessary, which is commonly set
based on the available computational resources.

e During inference, we also need to restrict the input length, since current Language
Models exhibit noticeable performance degradation when handling input sequences
exceeding max-length.
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Challenges in Achieving Long-Context Transformer-based LLMs

3. In-Context Memory
e LLMs lack an memory mechanism. Global and local information has to be stored in
the same element-wise representations. They rely on the KV cache to store
representations of all previous tokens.
e Though this offers computational advantages in terms of parallelism, it presents
challenges in tasks like chatbot applications, where long-term memory retention is

essential.

Carnegie
Mellon
University

Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey (Huang et al., 2024)




Topic list

1. Motivation

Related Work

Recurrent Memory Transformer
Memorization tasks

Learning Memory Optimizations

Natural and Formal Language modelling

N o o kW N

Conclusion & Discussion

Carnegie
Mellon
University



Overview of Methods for Long-Context LLMs
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Fig. 1. The overview of the survey: (a) The typical architecture anatomy diagram of contemporary Transformer-based decoder-
only LLMs, with the legend on the far top right; (b) The taxonomy of methodologies for enhancing Transformer architecture

modules (corresponding to (a) by color): (submodule of ) (targeting KV
cache), (against the module), (related to context pre/post-processing),
and (general for the whole as well as the Loss module).
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Related Work

Question:
e Toimprove the efficiency of attention = we want input length s to be not that
long

e But how to reduce s while still maintaining the model's ability to understand and
generate long contexts?

Solution:
e Idea1: Making Attention sparse to reduce computation

O Longformer, Big Bird
e Idea2: Making Transformer recurrent to reduce memory usage

O  Transformer-XL, Compressive Transformer, Memory Transformer
Carnegie
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Related work: Make Attention Sparse

Mistral-7B (Jiang et al. 2023)
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Figure 1: Sliding Window Attention. The number of operations in vanilla attention is quadratic in the sequence
length, and the memory increases linearly with the number of tokens. At inference time, this incurs higher
latency and smaller throughput due to reduced cache availability. To alleviate this issue, we use sliding window
attention: each token can attend to at most W tokens from the previous layer (here, W = 3). Note that tokens
outside the sliding window still influence next word prediction. At each attention layer, information can move
forward by W tokens. Hence, after k attention layers, information can move forward by up to k x W tokens.

Parameter Value
dim 4096
n_layers 32
head_dim 128
hidden_dim 14336
n_heads 32
n_kv_heads 8
window_size 4096

context_len 8192
vocab_size 32000

Table 1: Model architecture.
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e SWA exploits the stacked layers of a transformer to attend information beyond the

window size w

e The hidden state in position i of the layer k, hi attends to all hidden states from the

previous layer with positions between i - w and i.

e Recursively, hi can access tokens from the input layer at a distance of up to w x k

tokens

Mistral 7B (Jiang et al., 2023)
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Related work: Make Attention Sparse
Longformer (Beltagy et al. 2020)

Local attention: local attention is controlled by a sliding window of fixed size w

Global attention of preselected tokens: Longformer has a few pre-selected tokens
(e.g. [CLS] token) assigned with global attention span, that is, attending to all other

tokens in the input sequence.
Dilated attention: Dilated sliding window of fixed size r and gaps of dilation size d

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window
Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer. C o
arnegie
- Mellon
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Related work: Make Attention Sparse

Big Bird (Zaheer et al. 2020)

Random attention: Each token uses r random attention
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Figure 1: Building blocks of the attention mechanism used in BIGBIRD. White color indicates absence
of attention. (a) random attention with » = 2, (b) sliding window attention with w = 3 (c) global
attention with g = 2. (d) the combined BIGBIRD model.
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Related work: Make Attention Sparse

Longformer (Beltagy et al. 2020) Big Bird (Zaheer et al. 2020)

Limitations: A common constraint of these methods is that memory
requirements grow with input size during both training and inference,
inevitably limiting input scaling due to hardware constraints.

What can RMT do: In contrast, recurrent approaches have constant
memory complexity during inference.
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Related Work: Transformers with Context Memory b

Main Idea: Long inputs are divided into smaller segments, processed sequentially
with memory to access information from past segments

Transformer-XL(Dai et al., 2019; “XL"” stands for “extra long")

e Makes use of longer context by reusing hidden states between segments
e Keys and values rely on extended hidden states, while queries only consume hidden
states at the current step.

Transformer (Training) Transformer-XL (Training)
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Related Work: Transformers with Context Memory
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Main Idea: Long inputs are divided into smaller segments, processed sequentially

with memory to access information from past segments

Compressive Transformer (Rae et al., 2019)

e Extends Transformer-XL by compressing past memories to support longer sequences.
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Figure 1: The Compressive Transformer keeps a fine-grained memory of past activations, which are
then compressed into coarser compressed memories. The above model has three layers, a sequence
lengthn, = 3, memory size n,,, = 6, compressed memory size n.,, = 6. The highlighted memories
are compacted, with a compression function f. per layer, to a single compressed memory — instead
of being discarded at the next sequence. In this example, the rate of compression ¢ = 3.

Compressive Transformers for Long-Range Sequence Modelling (Rae et al., 2019)
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Related Work: Transformers with Context Memory

Compressive Transformer (Rae et al., 2019), Transformer-XL(Dai et al.,)
e Compressing past memories to support longer sequences.

Limitations: A drawback of most existing recurrent methods is the need for
architectural modifications that complicate their application to various
pre-trained models.

What can RMT do: RMT can be built upon any model that uses a common
supported interface (like Hugging Face Transformers).
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Related Work: Transformers with Context Memory N

Main Idea: Long inputs are divided into smaller segments, processed sequentially
with memory to access information from past segments

Memory Transformer(Burtsev et al., 2021)

e Extend the Transformer by adding [mem] tokens at the beginning of the input
sequence and train the model to use them as universal memory storage

mem token vectors

[sequence]
update

[sequence]
attention

mem tokens | sequence tokens
Xme7n+seq — [anem; Xseq] e R(n+m)xd’XnLem & Rde,XSEq = RnXd.

This modification can be applied independently to encoder and/or decoder. The rest of the Trans- C .
former stays the same with the multi-head attention layer processing the extended input. aI'Ilegle

Memory Transformer (Burtsev et al., 2021) %ellon .ty
niversi
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Recurrent Memory Transformer (RMT)

e What does RMT aim to solve?
o Attention Complexity v/
o Max-Length Constraint v/
o In-Context Memory v

e What is RMT?

o Based on special memory tokens similar to Memory Transformer, segment-level
recurrence as in Transformer-XL.

o Memory allows to store and process local and global information as well as to pass
information between segments of the long sequence with the help of recurrence.

Carnegie
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Recurrent Memory Transformer (RMT)

e How does it work?
o No changes to Transformer model
o Adding special memory tokens to the input sequence
o The model is trained to control both memory operations and sequence representatiol

processing.

[ Transformer Layers ]

2 | 1

1 ]
+ mem :: segment 1 ! _¥ :: segment 2 !
1 ! ' '

sjuatpeab
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Recurrent Memory Transformer (RMT) - Forward

class RecurrentWrapper(torch.nn.Module):
def __init_ (self, memory_cell, sxxrmt_kwargs):
super().__init_ ()

I self.memory_cell = memory_cell I Base mOdeI Wrapper - With memory

self.rmt_config = rmt_kwargs

def forward(self, input_ids, labels=None, labels_mask=None, inputs_embeds=None, attention_mask=None, output_attentions=None, output_hidden_st
memory_state = None

segmented = self.segment(input_ids=input_ids, inputs_embeds=inputs_embeds, attention_mask:attention_mask)| Segment inputs

cell_outputs = []
for seg_num, segment in enumerate(segmented):
I cell_out, memory_state = self.memory_cell(xksegment, memory_state=memory_state, output_hidden_states:True)I
cell_outputs.append(cell_out)

self.manage_gradients(memory_state, seg_num) Process seg ments

out = self.process_outputs(cell_outputs, labels=labels,
labels_mask=1labels_mask,

output_attentions=output_attentions,
output_hidden_states=output_hidden_states)
return out

University
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Recurrent Memory Transformer (RMT) - Memory Cell

class MemoryCell(torch.nn.Module):

def __init__ (self, base_model, num_mem_tokens):
super().__init__ ()
self.model = base_model
self.create_memory(num_mem_tokens)

def forward(self, input_ids, memory_state=None, sxxkwargs):
if memory_state is None:
memory_state = self.set_memory(input_ids.shape)

seg_kwargs = self.process_input(input_ids, memory_state, sxkkwargs)
out = self.model(xxseg_kwargs)
out, new_memory_state = self.process_output(out, sxxkwargs)
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Recurrent Memory Transformer (RMT)
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e RMT inference scales linearly w.r.t. FLOPS for any model size if the segment length is fixed
e Linear scaling is achieved by dividing a input sequence into segments and computing the

full attention matrix only within segment boundaries

e RMT requires fewer FLOPs than non-recurrent models for sequence with more than one

segment .
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Memorization Tasks

e Goal: We want to see if RMT can memorize “facts” to answer questions in QA
e Example:

Fact: Daniel went back to the hallway.
Question: Where is Daniel?
Answer: hallway

e Task 1: RMT's ability to write and store information in memory for an extended

time.
m Memorize
[rect][ wose L[ nase  [ii[ nese [ o i C ,
: arnegie
Fact is placed at the start of a sequence
P a Mellon
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Memorization Tasks

e Fact detection task: moves the fact to a random position in the input,
requiring the model to first distinguish the fact from irrelevant text, write it
to memory, and later use it to answer the question.

Detect & memorize m

..................................................................

e Reasoning Task: ability to operate with several facts and current context
m Reasoning m

Example: Fact1: The hallway is east of the bathroom. Fact2: The bedroom is west of the bathroom.
Question: What is the bathroom east of? .
Answer: bedroom Carnegle

Mellon
University
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Learning Memory Operations

Question 1: How improve training stability of the original RMT ?
Answer: Curriculum Learning.

Short Text
Mem I love dog.
Longer Text @
Mem I love dog. Mem But I hate cat.
Longerer Text @
Mem I love small Mem dog. But I hate Mem large dog.
Longer...er Text Nx @
Mem I love dogs. Mem Mem Dogs have an intuitive Mem sense of empathy.

28
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Learning Memory Operations
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Question 2: How well does RMT generalize to different sequence lengths?
Answer: The generalization ratio enlarges with increasing numbers of training

Segmentatlons.
Memorization
B — iy
el
“l%
80 | Trained on
_ 1 seg
> 2 seg
© oo = 3 seg
: w4 seg
3 " 5 seg
<t a | ™ 7 e
e U 7 Seg
26

1 2 3 4 5 6 7 8 9 1011 12 13 14 15
Evaluated on, segments

Accuracy

100

<]
=)

o
@

40

20

Detect & Memorize

Trained on

1 seg
2 seg

&+ 3 seg
& 4 seg
& 5 seg
& 6 seg

e

7 seg

1 2 3 4 5 6 7 8 9 10111213 1415

Evaluated on, segments
b

Accuracy

100

<
=3

=)
=]

N
[S)

20

Reasoning

Ty 5
i - T
i %
L * -
B
f e
»
. F—.

Trained on Hing

i 1 seg
2 seg

1 2 3 45 6 7 8 9 1011 12 13 14 15
Evaluated on, segments
C

Carnegie
Mellon
University



Learning Memory Operations

Question 2: How well does RMT generalize to different sequence lengths?

30

Answer: We observe a extrapolation of more than 500 times on a pre-trained BERT

model.
Memory retrieval accuracy
GPT-4 CoLT5
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Figure 5: Recurrent Memory Transformer retains information across up to 2 x 10° tokens. By augmenting a pre-trained BERT model
with recurrent memory (Bulatov, Kuratov, and Burtsev 2022), we enabled it to store task-specific information across 7 segments of 512 tokens
each. During inference, the model effectively utilized memory for up to 4,096 segments with a total length of 2,048,000 tokens—significantly
exceeding the largest input size reported for transformer models (64K tokens for CoLT5 (Ainslie et al. 2023), and 32K tokens for GPT-
4 (OpenAl 2023), and 100K tokens for Claude). This augmentation maintains the base model’s memory size at 3.6 GB in our experiments.
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Learning Memory Operations

Question 3: Can RMT identify important facts and store them in memory ?
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Natural and Formal Language Modelling

Curriculum with length mixing

Trained on

e RMT trained for an equal number of ..
steps as the baseline GPT-2 displays  z. "
substantially lower perplexity values ..

e Increasing number of segments in | evaliated on, segnents
training RMT exhibits better tolerance ArXiv LM, context size 1624
to longer history sizes. o
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Natural and Formal Language Modelling

RMT ensures equally good prediction for all tokens due to carryover of information
from the previous segment

—— GPT-2, arXiv fine-tuned, context size 0

RMT-GPT-2, arXiv fine-tuned,
segment size 128, trained on 6 segments

—— GPT-2, arXiv fine-tuned, context size 128

Z} GPT-2, arXiv fine-tuned, context size 768
o
'_12.5
High initial | S
igh initial loss
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context
1+5
WVW\/\WV\NA—M/\W
0 20 4o 60 80 100 120 Carnegie
Token position in the last segment Mellon

University



35

Natural and Formal Language Modelling
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The RMT model improves perplexity compared to the memory-less model.

However, training with 4 or more segments does not enhance predictions Carnegie
for longer sequences Mellon
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Conclusion

e Problem: Long input scaling in Transformers (Encoder-only & Decoder-only)
e Solution: Segment-level recurrence using recurrent memory (RMT , a kind of compression)
1. Linear Inference Complexity
2. Limitation of Sequence Length
3. In-context Memory
e Training method: Curriculum Learning (short — long — longer — ... — longer)
e Extrapolation: RMT can handle sequences exceeding 1 million tokens while only training on
sentence no more than 5k tokens. Therefore, it can maintain computational complexity
during training and inference.
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Discussion

e RMT perform well in specialized tasks. What about other general tasks?

e Comparing to other recurrent-based approaches, such as Mamba [1] and Griffin
[2], what are the advantages and disadvantages of RMT ?

e Evaluated on BERT, Opt and GPT2, the effectiveness of RMT on recent LLMs
remains unknown.

[1] Albert Gu, Tri Dao, Mamba: Linear-Time Sequence Modeling with Selective State Spaces.

[2] De et al., Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models. Cal'negie
Mellon
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