Orca: A Distributed Serving System for Transformer Based Generative Models

Pratheek D Souza Rebello Yichen Zheng Guanyi Xu Kexun Zhang

In class Presentation on March 20th, 2024

1

Outline

- Introduction & Related Work
 - Challenges & Solutions
 - Orca Design
 - Evaluation
 - Summary & Future work

Serving LLMs is expensive

A GPT-3 175B instance requires **2 VMs**, each with 8 NVIDIA A100 GPUs on Azure.

Each VM costs **\$27.197/hour**.

2VMs cost **\$476491.44/year**.

If we need to host 400 instances, **\$190.6M / year**.

Price in 2022, GPT-3 models are now deprecated on Azure.

Orca Improves Throughput by 36.9x

Compared to NVIDIA FasterTransformer, Orca improves throughput by **36.9x** at the same level of latency on GPT-3 175B.

Inference of Autoregressive LMs

Multi-iteration characteristic

Unlike BERT or ResNet, they generate one token at a time.

Initiation phase (1st iteration)

Process all input tokens (prefix/prompt) at once.

Increment phase (2nt to last iteration)

Process a single token generated from the prev. iteration.

I lee attention keys and values of all nrev tokens

Serving of Autoregressive LMs

Current Systems are Request-Level

Existing execution engines (FasterTransformer, LightSeq, etc.) assumes **request-level scheduling**.

Existing inference servers (Triton Inference Server,

TensorFlow Serving) assumes request-level execution.

Orca Allows Iteration-Level Scheduling

Orca maintains a request pool.

Each time we take as many requests as possible from the pool and run them for **one iteration**.

Newly arrived requests wait for **only one iteration** when batch size allows.

This makes batching harder.

Iteration-Level Scheduling is Harder to Batch

Batching is only applicable when requests are in the **same phase** (initiation or increment) requests have the **same length**

Iteration-Level Scheduling is Harder to Batch

Batching is only applicable when requests are in the **same phase** (initiation or increment) requests have the **same length**

Iteration-Level Scheduling is Harder to Batch

Batching is only applicable when requests are in the **same phase** (initiation or increment) requests have the **same length**

Orca is Inspired by BatchMaker

BatchMaker is a serving system for RNNs that perform scheduling and batching at cell-level.

Batching transformers at iteration level is harder because different requests have different number of keys and values, which isn't the case for RNNs.

Orca Uses Selective Batching

Not all operations are incompatible with irregularly shaped tensors.

Matrix multiplication and layer normalization can be batched, because they do not distinguish different requests.

Outline

- Introduction & Related Work
- Challenges & Solutions
 - Orca Design
 - Evaluation
 - Summary & Future work

Example

C1: Request Scheduling

Drawback: High Latency

1. Requests in same batch may have extra computation due to other "active" requests.

2. Newly arrived requests wait until all requests in the current batch have finished.

S1: Iteration-Level Scheduling

C2: Batching

Batching is only applicable when requests are in the **same phase** (initiation or increment) requests have the **same length**

Three cases cannot batch normally:

- 1. both requests are in the initiation phase and each has different number of input tokens
- 2. both are in the increment phase and each is processing a token at different index from each other

*/*e

3. each request is in the different phase: initiation or increment

S2: Selective Batching

Each iteration:

$$x_1 \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \end{bmatrix}$$

$$x_3 x_{31} x_{32}$$

$$x_2 x_{21} x_{22}$$

$$x_4 | x_{41} | x_{42} | x_{43}$$

Example

Outline

- Introduction & Related Work
- Challenges & Solutions
- Orca Design
 - Evaluation
 - Summary & Future work

We first focus on the execution engine design

43

Data Flow

Data Flow v/s Control Flow

Only intermediate **tensor data** is exchanged via NCCL (GPU-GPU) communication

Control messages btw engine master and worker controllers are exchanged by a separate communication channel (not involving GPUs) ex: gRPC - Remote Procedure Calls

Minimizes synch overheads btw CPU and GPU

Control Flow

Control messages contain information about requests like *id*, *phase, token index* (for requests in increment phase), *number of input tokens* (for requests in initiation phase)

Engine Master sends the control message to Worker 1 Controller.

Controller passes the message to **GPU**s which start issuing kernels for computation ex: querying the key-value memory from attention manager

Meanwhile, Worker 1 Controller forwards control message to Worker 2 Controller

Control Flow

Control Flow

Control messages are sent from worker to worker without waiting for synchronization from GPUs

Only the **last worker** must wait for the GPUs to finish and then it can collect the output tokens and return to master

FasterTransformer, Megatron-LM exchange control messages via NCCL which requires CPU-GPU synch **at every step** imposing a non-negligible communication overhead

Next we look at the scheduler design

At each iteration which requests should ORCA process?

First Come First Serve (FCFS)

The algorithm maintains the following invariant:

Given a pair of requests (**a**, **b**), If **a** arrived before **b**, **a** should have run same or more iterations than **b**

This is achieved by sorting requests by arrival time

Note: It is still possible that **b** returns to client before **a** only if **b** requires fewer number of iterations to complete

52

GPU Memory Constraint

Each token needs a buffer to store attention key-values

Buffers for a request cannot be freed till the request has completed **all** iterations

Naively allocating buffers can lead to **deadlock**

Iteration 1 ...

x1: my cat is

Iteration 1 ...

x1: my cat is

Iteration 1 ... x1: my cat is Iteration 2 ... x1: I

Iteration 1 x1: my cat is Iteration 2 x1: I

Iteration 1

x1: my cat is so

Iteration 2 ...

Solution: **Memory Aware Allocation** - reserve enough GPU space for all iterations at the 1st iteration itself

Predetermine 'max_tokens' any request can generate

Iteration 1 ...

x1: my cat is

eg: max_tokens = 5

Iteration 1 ...

x1: my cat is

eg: max_tokens = 5

Scheduler Pseudocode Walkthrough

[n_scheduled = number of busy workers]

Params: <i>n_workers</i> : number of workers, <i>max_bs</i> :		
	max batch size, <i>n_slots</i> : number of K/V slots	
1 $n_scheduled \leftarrow 0$		
2 $n_rsrv \leftarrow 0$		
3 while true do		
4	$batch, n_rsrv \leftarrow Select(request_pool, n_rsrv)$	
5	schedule engine to run one iteration of	
	the model for the batch	
6	foreach req in batch do	
7	$req.state \leftarrow RUNNING$	
8	$n_scheduled \leftarrow n_scheduled + 1$	
9	if $n_scheduled = n_workers$ then	
10	wait for return of a scheduled batch	
11	foreach req in the returned batch do	
12	$req.state \leftarrow INCREMENT$	
13	if finished(req) then [GPU Memory]	
14	$n_rsrv \leftarrow n_rsrv - req.max_tokens$ is Freed]	
15	$ $ <i>n_scheduled</i> \leftarrow <i>n_scheduled</i> -1	

[n_rsrv = number of slots already reserved]

17 C	lef Select(pool, n_rsrv):
18	$ batch \leftarrow \{\}$
19	$pool \leftarrow \{req \in pool req.state \neq RUNNING\}$
20	SortByArrivalTime(pool) [FCFS]
21	foreach req in pool do
22	if <i>batch.size() = max_bs</i> then <i>break</i>
23	if req.state = INITIATION then
24	$ $ <i>new_n_rsrv</i> \leftarrow <i>n_rsrv</i> + <i>req.max_tokens</i> [GPU
25	if new_n_rsrv > n_slots then break Memory
26	$n_{rsrv} \leftarrow new_{n_{rsrv}}$ Constraint]
27	$batch \leftarrow batch \cup \{req\}$
28	return batch,n_rsrv

There are concurrent threads running which insert newly arrived requests into the pool and remove finished requests

3. Pipeline Parallelism

3. Pipeline Parallelism

Key reason for bubbles: **Request Level Scheduling** - must wait till batch completes **all iterations** before starting a new batch

ORCA has Iteration Level Scheduling!

3. Pipeline Parallelism

ORCA will schedule a batch whenever there is a free worker:

If num scheduled batches < num workers Assign batch to free worker Else wait

No worker is ever idle if there are requests

Pipelining achieved without microbatching!

Outline

- Introduction & Related Work
- Challenges & Solutions
- Orca Design
- Evaluation
 - Summary & Future work

Evaluation setup

- Model
 - GPT-3 models up to 341B parameters
- Hardware
 - $_{\circ}~$ Azure VMs with 8 A100 40G GPUs
- Baseline
 - Execution engine: NVIDIA FasterTransformer
 - Inference server: custom scheduler that mimics the batching scheduler of the NVIDIA Triton

ORCA System Design(recap) Orca **Execution Engine** Requests Scheduler **Request Pool** Responses

Scenario 1(Engine efficiency)

- Disabled iteration-level scheduler
- Aims to test the overall performance of ORCA engine given the experimental scenario that batch of same-length input keeps arriving

Results (Scenario 1)

- No attention operation batching
- Control-data plane separation for better performance on 175B and 341B models

Scenario 2 (End-to-end)

Workload

- Synthesized the trace of client requests
- Request arrival time: Poisson process with varying request rate
- Input length: Uniform(32, 512)
- Output length: Uniform(1, 128)
- Measure: Latency-throughput
 - Normalized latency by output length since processing time is approximately proportional to output length

Results(Scenario 2)

- No significant speedup for small number of requests
- 36.9× speedup for large number of requests

Outline

- Introduction & Related Work
- Challenges & Solutions
- Orca Design
- Evaluation
- Summary & Future work

Summary

Challenges that ORCA Address

- Request Scheduling
- Batching

· Solutions

- Iteration-level scheduling
- Selective batching

· Design

- Distributed Architecture
- Iteration-level scheduler
- Pipeline Parallelism

Pros & Cons

· Pros

- First serving system for Transformer-based models that employs iteration-level scheduling and selective batching
- Improves throughput by 36.9x for GPT-3 175B model

· Cons

- $_{\circ}$ Lack of broader evaluations
- No open-source codebase for replication
- Such sophisticated scheduling system makes memory management challenging

Future directions

- Optimizing memory management for LLM serving
 - Optimizing KV-cache
 - PagedAttention!