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• Megatron-LM
o Split the matrix into multiple parts and do matmul separately
oNo sync point within Linear and Self-attn
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Tensor Parallelism



• The model is distributed across multiple GPUs over layers. 

• Devices can be idle while waiting for others
oGPipe: divides data into smaller micro-batches. Has bubbles.
o PipeDream: starts backward ASAP. Less bubbles.
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Pipeline Parallelism

GPipe PipeDream



• Each device has the same model and do forward and 
backward on a mini-batch separately. Quite easy and 
intuitive, but …
oCannot train LLM that cannot fit into one device
o Each device has the whole replica of the model
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Data Parallelism



• Goal: In data parallelism, it is essential to ensure that each 
device is updated coherently, therefore we need to 
aggregate (reduce) gradients across different devices. 

• Centralized Reduce: all workers communicate with 
parameter servers for weights update; cannot scale to large 
numbers of workers

• All Reduce
oNaïve AllReduce
o Ring AllReduce 5

Reduce



• Each worker can send its local gradients to other workers

• N workers, each M params, overall N * (N-1) * M params

• Issue: each worker communicates with all other workers; 
same scalability issue as parameter server

6

Naïve AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N 
parameters) to the next worker on the ring; repeat N times
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Ring AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N 
parameters) to the next worker on the ring; repeat N times
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Ring AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N 
parameters) to the next worker on the ring; repeat N times
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Ring AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• After step 1, each worker has the aggregated version of 
M/N parameters
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Ring AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• Step 2 (Broadcast): each worker send one slice of 
aggregated parameters to the next worker; repeat N times

11

Ring AllReduce



• Construct a ring of N workers

• divide M parameters into N slices

• Step 2 (Broadcast): each worker send one slice of 
aggregated parameters to the next worker; repeat N times

12

Ring AllReduce



• Overall communication: 2 * M * N parameters
o Aggregation: M * N parameters
o Broadcast: M * N parameters

13

Ring AllReduce



• Model Parallelism
o Pros: Good memory efficiency
oCons: Poor compute /communication efficiency (5% of peak perf 

in training 40B model with Megatron)

• Data parallelism
o Pros: Good compute/communication efficiency
oCons: Poor memory efficiency (Every device has one copy of 

model)
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Summary



• The GPUs need to store model weights, forward activation, 
backward gradient, optimizer state

• Common methods in optimization: Adam + Mixed-precision
oOptimizer States: Momentum + Variance
oModel: Parameters and Gradients 
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Memory Usage

Adam Optimizer 



• adam optimizer, mixed-precision training, N params
o FP32 master parameters: 4N Bytes
o FP32 optimizer states: 4N * 2 Bytes (Momentum and Variance)
o FP16 model parameters: 2N Bytes
o FP16 optimizer states: 2N Bytes (Momentum only)
o 16N Bytes in total

• For 1.5B GPT-2, 24GB vMem

• For 175B GPT-3, 2800GB vMem
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Memory Usage



• Example: GPT-2 w/ 1.5B parameters
o FP32 master parameters: 6G Bytes
o FP32 optimizer states: 12G Bytes (Momentum and Variance)
o FP16 model parameters: 3G Bytes
o FP16 optimizer states: 3G Bytes (Momentum only)
o 24G Bytes in total

• For 1.5B GPT-2, 24GB vMem

• For 175B GPT-3, 2800GB vMem
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Memory Usage



• Example: GPT-3 w/ 175B parameters
o FP32 master parameters: 700G Bytes
o FP32 optimizer states: 1400G Bytes (Momentum and Variance)
o FP16 model parameters: 350G Bytes
o FP16 optimizer states: 350G Bytes (Momentum only)
o 2800G Bytes in total
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Memory Usage



• Temporary Buffers:
o Storing intermediate results.
oOperations such as gradient norm computation tend to fuse all 

the gradients into a single flattened buffer before applying the 
operation in an effort to improve throughput.

• Memory Fragmentation
o In extreme cases can be 30%. 
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Other Memory Usages



• Suppose there are
o Two data splits: Data0 and Data1
o Two GPUs: GPU0 and GPU1
o 16 layer Transformer Model
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Memory Consumption



• Each cell represents GPU memory used by the 
corresponding transformer layer
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Memory Consumption



• Each cell represents GPU memory used by the 
corresponding transformer layer
o FP16 parameters
o FP16 Gradients
o FP32 Optimizer States (Gradients, Variance, Momentum, 

Parameters) 
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Memory Consumption
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Memory Consumption



• Each cell represents GPU memory used by the 
corresponding transformer layer
o FP16 parameters
o FP16 Gradients
o FP32 Optimizer States (Gradients, Variance, Momentum, 

Parameters) 
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Memory Consumption



• Reducing Activation Memory
o Activation Checkpoint, Compression
o All Work in parallel with ZeRO

• CPU Offload
o Requires CPU-GPU-CPU transfer, which can take 50% time

• Memory Efficient Optimizer
oMaintaining coarser-grained stats of model params and gradients
oWorks in parallel with ZeRO
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Common Approaches to Reduce Memory



• Work done by Microsoft, implemented in Deepspeed.

• Features:
o Eliminating data redundancy in data parallel training
oCan be widely used in large language model training

26

ZeRO - Zero Redundancy Optimizer



• Question: How can we partition optimizer states? 
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ZeRO 1: Partitioning Optimizer States 



• forward pass to produce activations and loss (by fp16 
parameters)
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ZeRO 1: Partitioning Optimizer States 



• forward pass to produce activations and loss (by fp16 
parameters)
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ZeRO 1: Partitioning Optimizer States 



• loss backward to calculate fp16 gradients
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ZeRO 1: Partitioning Optimizer States 



• loss backward to calculate fp16 gradients
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ZeRO 1: Partitioning Optimizer States 



• loss backward to calculate fp16 gradients
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ZeRO 1: Partitioning Optimizer States 



• gradient gathering from another GPU and average gradient 
calculation
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ZeRO 1: Partitioning Optimizer States 



• fp32 gradient update
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ZeRO 1: Partitioning Optimizer States 



• fp32 variance update
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ZeRO 1: Partitioning Optimizer States 



• fp32 momentum update 
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ZeRO 1: Partitioning Optimizer States 



• fp32 parameters update
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ZeRO 1: Partitioning Optimizer States 



• copy fp32 parameters to fp16 parameters 
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ZeRO 1: Partitioning Optimizer States 



• fp16 parameters ready
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ZeRO 1: Partitioning Optimizer States 



• all gather the fp16 weights to complete the iteration
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ZeRO 1: Partitioning Optimizer States 



• Key idea:
o Each GPU is only needs to store one partition of gradients 

instead of all gradients
oHowever, each GPU is responsible for different data, meaning it 

still needs to compute all the gradients, although it only needs to 
store one partition
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ZeRO 2: Partition Gradients



• Key idea:
o For the gradients out of its responsibility, the GPU passes those 

gradients(computed with its own data) to the GPU responsible for 
those gradients.

o The result is memory usage for gradients reduced by Nd times. 
(Nd = # of GPUs) 
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ZeRO 2: Partition Gradients



• The backward pass starts

• GPU 0,1,2 hold temporary buffers for the gradients that 
GPU 3 is responsible for (M3) 
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ZeRO 2: Partition Gradients



• GPU 0,1,2 pass the M3 gradients to GPU 3
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ZeRO 2: Partition Gradients



• Then they delete M3 gradients, GPU 3 will keep M3 
gradients
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ZeRO 2: Partition Gradients



• GPU 0,2,3 hold temporary buffers for the gradients that 
GPU 2 is responsible for (M2) 
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ZeRO 2: Partition Gradients



• GPU 0,2,3 pass the M2 gradients to GPU 2
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ZeRO 2: Partition Gradients



• Then they delete M2 gradients, GPU 2 will keep M2 
gradients
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ZeRO 2: Partition Gradients



• Same thing for GPU1/M1
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ZeRO 2: Partition Gradients



• Same thing for GPU0/M0
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ZeRO 2: Partition Gradients
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ZeRO 2: Partition Gradients
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ZeRO 2: Partition Gradients



• In data parallel training, all GPUs keep all parameters during 
training
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ZeRO 3: Partitioning Parameters



• In ZeRO, model parameters are partitioned across GPUs
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ZeRO 3: Partitioning Parameters



• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward 
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ZeRO 3: Partitioning Parameters



• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use 
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ZeRO 3: Partitioning Parameters



• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward 
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ZeRO 3: Partitioning Parameters



• Zero-DP stage 1 and 2 (optimizer state and gradient) 
doesn’t introduce additional communication, while enabling 
up to 8x memory reduction

• Zero-DP stage 3 (parameter)  incurs a maximum of 1.5x 
communication 
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Zero-DP Summary



• Partitioned Activation Checkpointing
oModel Parallelism by design requires a replication of the 

activations
o Split every activation to different devices
oGather them when needed

61

ZeRO-R



• Constant Size Buffers
o Buffer is used in doing all-reduce to improve bandwidth
oModern implementations fuses all the parameters into a single 

buffer
o ZeRO uses constant size buffers to be more efficient for a large 

model
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ZeRO-R



• Memory Defragmentation
o Long-lived memory (Model parameters, Optimizer state): Store 

together
o Short-lived memory (Discarded activations) 
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ZeRO-R
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ZeRO 3: Partitioning Parameters



• Model has N parameters

• Operation (scatter-reduce, all-gather) done on the 
(parameters, gradients) has the same amount of data 
transfer (C * N = M)
o Baseline (Vanilla DP): One scatter-reduce to average gradients 

and one all-gather on averaged gradients, Total 2M
o Zero-R: No precise numbers, depends on design choice and 

implementation
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Communication Analysis



• Zero-1 (Partition optimizer state) One scatter-reduce to 
average gradients and one all-gather on collecting 
parameters, total 2M communication
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Communication Analysis



• Zero-2 (Partition gradient): Still one scatter-reduce to 
average gradients and one all-gather on collecting 
parameters, total 2M communication overhead
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Communication Analysis



• Zero-3 (Partition model parameters): One more all-gather 
during forward, plus all in Zero-1,2, total 3M communication 
overhead
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Communication Analysis



• Theoretical: On a 32GB V100 clusters (Up to 1024 V100)
o Enable the training of a model with 1 Trillion (1000B) parameters 

using 1024 V100
o There is no limit to the number of GPUs. (So probably more) 
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Results

Per-device memory consumption of different optimizations 



• Practical:
o Train a 17B model (Turing-NLG. The largest as of 2020.1) and 

has SOTA perplexity in Webtext-103
o Train a 100B model on 400 GPUs, achieving high throughput 

over baseline (~10x, 30% of the theoretical peak)
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Results



• ZeRO is a distributed learning framework with data 
parallelization

• ZeRO partitions model states across devices

• ZeRO trains a new SOTA model with 17B models in 2019
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Summarization



• Pros
o Lower memory usages significantly
o Scalable, flexible, easy-to-use
oCan be applied to any type of model
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Summarization



• Cons
o Some stages introduce extra communication overhead
o Performance may depend on infrastructure (PCI-E / NVLink)
oNo reduction on total computation needed
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Summarization



• Improve the memory utilization

• Lower communication overhead

• Better select training configurations with AutoML

• Heterogeneous hardware support to maximize performance
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Future Directions


