
ZeRO: Memory Optimizations
Toward Training Trillion

Parameter Models
Zhe Su Yu-Chen Lin

Shuning Lin Kewen Zhao
CMU

1

• Megatron-LM
o Split the matrix into multiple parts and do matmul separately
oNo sync point within Linear and Self-attn

2

Tensor Parallelism

• The model is distributed across multiple GPUs over layers.

• Devices can be idle while waiting for others
oGPipe: divides data into smaller micro-batches. Has bubbles.
o PipeDream: starts backward ASAP. Less bubbles.

3

Pipeline Parallelism

GPipe PipeDream

• Each device has the same model and do forward and
backward on a mini-batch separately. Quite easy and
intuitive, but …
oCannot train LLM that cannot fit into one device
o Each device has the whole replica of the model

4

Data Parallelism

• Goal: In data parallelism, it is essential to ensure that each
device is updated coherently, therefore we need to
aggregate (reduce) gradients across different devices.

• Centralized Reduce: all workers communicate with
parameter servers for weights update; cannot scale to large
numbers of workers

• All Reduce
oNaïve AllReduce
o Ring AllReduce 5

Reduce

• Each worker can send its local gradients to other workers

• N workers, each M params, overall N * (N-1) * M params

• Issue: each worker communicates with all other workers;
same scalability issue as parameter server

6

Naïve AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N
parameters) to the next worker on the ring; repeat N times

7

Ring AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N
parameters) to the next worker on the ring; repeat N times

8

Ring AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• Step 1 (Aggregation): each worker send one slice (M/N
parameters) to the next worker on the ring; repeat N times

9

Ring AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• After step 1, each worker has the aggregated version of
M/N parameters

10

Ring AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• Step 2 (Broadcast): each worker send one slice of
aggregated parameters to the next worker; repeat N times

11

Ring AllReduce

• Construct a ring of N workers

• divide M parameters into N slices

• Step 2 (Broadcast): each worker send one slice of
aggregated parameters to the next worker; repeat N times

12

Ring AllReduce

• Overall communication: 2 * M * N parameters
o Aggregation: M * N parameters
o Broadcast: M * N parameters

13

Ring AllReduce

• Model Parallelism
o Pros: Good memory efficiency
oCons: Poor compute /communication efficiency (5% of peak perf

in training 40B model with Megatron)

• Data parallelism
o Pros: Good compute/communication efficiency
oCons: Poor memory efficiency (Every device has one copy of

model)

14

Summary

• The GPUs need to store model weights, forward activation,
backward gradient, optimizer state

• Common methods in optimization: Adam + Mixed-precision
oOptimizer States: Momentum + Variance
oModel: Parameters and Gradients

15

Memory Usage

Adam Optimizer

• adam optimizer, mixed-precision training, N params
o FP32 master parameters: 4N Bytes
o FP32 optimizer states: 4N * 2 Bytes (Momentum and Variance)
o FP16 model parameters: 2N Bytes
o FP16 optimizer states: 2N Bytes (Momentum only)
o 16N Bytes in total

• For 1.5B GPT-2, 24GB vMem

• For 175B GPT-3, 2800GB vMem
16

Memory Usage

• Example: GPT-2 w/ 1.5B parameters
o FP32 master parameters: 6G Bytes
o FP32 optimizer states: 12G Bytes (Momentum and Variance)
o FP16 model parameters: 3G Bytes
o FP16 optimizer states: 3G Bytes (Momentum only)
o 24G Bytes in total

• For 1.5B GPT-2, 24GB vMem

• For 175B GPT-3, 2800GB vMem
17

Memory Usage

• Example: GPT-3 w/ 175B parameters
o FP32 master parameters: 700G Bytes
o FP32 optimizer states: 1400G Bytes (Momentum and Variance)
o FP16 model parameters: 350G Bytes
o FP16 optimizer states: 350G Bytes (Momentum only)
o 2800G Bytes in total

18

Memory Usage

• Temporary Buffers:
o Storing intermediate results.
oOperations such as gradient norm computation tend to fuse all

the gradients into a single flattened buffer before applying the
operation in an effort to improve throughput.

• Memory Fragmentation
o In extreme cases can be 30%.

19

Other Memory Usages

• Suppose there are
o Two data splits: Data0 and Data1
o Two GPUs: GPU0 and GPU1
o 16 layer Transformer Model

20

Memory Consumption

• Each cell represents GPU memory used by the
corresponding transformer layer

21

Memory Consumption

• Each cell represents GPU memory used by the
corresponding transformer layer
o FP16 parameters
o FP16 Gradients
o FP32 Optimizer States (Gradients, Variance, Momentum,

Parameters)

22

Memory Consumption

• Each cell represents GPU memory used by the
corresponding transformer layer
o FP16 parameters
o FP16 Gradients
o FP32 Optimizer States (Gradients, Variance, Momentum,

Parameters)

23

Memory Consumption

• Each cell represents GPU memory used by the
corresponding transformer layer
o FP16 parameters
o FP16 Gradients
o FP32 Optimizer States (Gradients, Variance, Momentum,

Parameters)

24

Memory Consumption

• Reducing Activation Memory
o Activation Checkpoint, Compression
o All Work in parallel with ZeRO

• CPU Offload
o Requires CPU-GPU-CPU transfer, which can take 50% time

• Memory Efficient Optimizer
oMaintaining coarser-grained stats of model params and gradients
oWorks in parallel with ZeRO

25

Common Approaches to Reduce Memory

• Work done by Microsoft, implemented in Deepspeed.

• Features:
o Eliminating data redundancy in data parallel training
oCan be widely used in large language model training

26

ZeRO - Zero Redundancy Optimizer

• Question: How can we partition optimizer states?

27

ZeRO 1: Partitioning Optimizer States

• forward pass to produce activations and loss (by fp16
parameters)

28

ZeRO 1: Partitioning Optimizer States

• forward pass to produce activations and loss (by fp16
parameters)

29

ZeRO 1: Partitioning Optimizer States

• forward pass to produce activations and loss (by fp16
parameters)

30

ZeRO 1: Partitioning Optimizer States

• forward pass to produce activations and loss (by fp16
parameters)

31

ZeRO 1: Partitioning Optimizer States

• loss backward to calculate fp16 gradients

32

ZeRO 1: Partitioning Optimizer States

• loss backward to calculate fp16 gradients

33

ZeRO 1: Partitioning Optimizer States

• loss backward to calculate fp16 gradients

34

ZeRO 1: Partitioning Optimizer States

• gradient gathering from another GPU and average gradient
calculation

35

ZeRO 1: Partitioning Optimizer States

• fp32 gradient update

36

ZeRO 1: Partitioning Optimizer States

• fp32 variance update

37

ZeRO 1: Partitioning Optimizer States

• fp32 momentum update

38

ZeRO 1: Partitioning Optimizer States

• fp32 parameters update

39

ZeRO 1: Partitioning Optimizer States

• copy fp32 parameters to fp16 parameters

40

ZeRO 1: Partitioning Optimizer States

• fp16 parameters ready

41

ZeRO 1: Partitioning Optimizer States

• all gather the fp16 weights to complete the iteration

42

ZeRO 1: Partitioning Optimizer States

• Key idea:
o Each GPU is only needs to store one partition of gradients

instead of all gradients
oHowever, each GPU is responsible for different data, meaning it

still needs to compute all the gradients, although it only needs to
store one partition

43

ZeRO 2: Partition Gradients

• Key idea:
o For the gradients out of its responsibility, the GPU passes those

gradients(computed with its own data) to the GPU responsible for
those gradients.

o The result is memory usage for gradients reduced by Nd times.
(Nd = # of GPUs)

44

ZeRO 2: Partition Gradients

• The backward pass starts

• GPU 0,1,2 hold temporary buffers for the gradients that
GPU 3 is responsible for (M3)

45

ZeRO 2: Partition Gradients

• GPU 0,1,2 pass the M3 gradients to GPU 3

46

ZeRO 2: Partition Gradients

• Then they delete M3 gradients, GPU 3 will keep M3
gradients

47

ZeRO 2: Partition Gradients

• GPU 0,2,3 hold temporary buffers for the gradients that
GPU 2 is responsible for (M2)

48

ZeRO 2: Partition Gradients

• GPU 0,2,3 pass the M2 gradients to GPU 2

49

ZeRO 2: Partition Gradients

• Then they delete M2 gradients, GPU 2 will keep M2
gradients

50

ZeRO 2: Partition Gradients

• Same thing for GPU1/M1

51

ZeRO 2: Partition Gradients

• Same thing for GPU0/M0

52

ZeRO 2: Partition Gradients

53

ZeRO 2: Partition Gradients

54

ZeRO 2: Partition Gradients

• In data parallel training, all GPUs keep all parameters during
training

55

ZeRO 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

56

ZeRO 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters during forward

57

ZeRO 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• Parameters are discarded right after use

58

ZeRO 3: Partitioning Parameters

• In ZeRO, model parameters are partitioned across GPUs

• GPUs broadcast their parameters again during backward

59

ZeRO 3: Partitioning Parameters

• Zero-DP stage 1 and 2 (optimizer state and gradient)
doesn’t introduce additional communication, while enabling
up to 8x memory reduction

• Zero-DP stage 3 (parameter) incurs a maximum of 1.5x
communication

60

Zero-DP Summary

• Partitioned Activation Checkpointing
oModel Parallelism by design requires a replication of the

activations
o Split every activation to different devices
oGather them when needed

61

ZeRO-R

• Constant Size Buffers
o Buffer is used in doing all-reduce to improve bandwidth
oModern implementations fuses all the parameters into a single

buffer
o ZeRO uses constant size buffers to be more efficient for a large

model

62

ZeRO-R

• Memory Defragmentation
o Long-lived memory (Model parameters, Optimizer state): Store

together
o Short-lived memory (Discarded activations)

63

ZeRO-R

64

ZeRO 3: Partitioning Parameters

• Model has N parameters

• Operation (scatter-reduce, all-gather) done on the
(parameters, gradients) has the same amount of data
transfer (C * N = M)
o Baseline (Vanilla DP): One scatter-reduce to average gradients

and one all-gather on averaged gradients, Total 2M
o Zero-R: No precise numbers, depends on design choice and

implementation

65

Communication Analysis

• Zero-1 (Partition optimizer state) One scatter-reduce to
average gradients and one all-gather on collecting
parameters, total 2M communication

66

Communication Analysis

• Zero-2 (Partition gradient): Still one scatter-reduce to
average gradients and one all-gather on collecting
parameters, total 2M communication overhead

67

Communication Analysis

• Zero-3 (Partition model parameters): One more all-gather
during forward, plus all in Zero-1,2, total 3M communication
overhead

68

Communication Analysis

• Theoretical: On a 32GB V100 clusters (Up to 1024 V100)
o Enable the training of a model with 1 Trillion (1000B) parameters

using 1024 V100
o There is no limit to the number of GPUs. (So probably more)

69

Results

Per-device memory consumption of different optimizations

• Practical:
o Train a 17B model (Turing-NLG. The largest as of 2020.1) and

has SOTA perplexity in Webtext-103
o Train a 100B model on 400 GPUs, achieving high throughput

over baseline (~10x, 30% of the theoretical peak)

70

Results

• ZeRO is a distributed learning framework with data
parallelization

• ZeRO partitions model states across devices

• ZeRO trains a new SOTA model with 17B models in 2019

71

Summarization

• Pros
o Lower memory usages significantly
o Scalable, flexible, easy-to-use
oCan be applied to any type of model

72

Summarization

• Cons
o Some stages introduce extra communication overhead
o Performance may depend on infrastructure (PCI-E / NVLink)
oNo reduction on total computation needed

73

Summarization

• Improve the memory utilization

• Lower communication overhead

• Better select training configurations with AutoML

• Heterogeneous hardware support to maximize performance

74

Future Directions

