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Motivation: Fine-tuning is expensive
A Full-parameter Fine-Tuning
A Update all model parameters — Require large GPU memory
A e.g. 16-bit Fine-tuning cost per parameter
A Weight: 16 bits (2 bytes)
[ Weight Gradient: 16 bits (2 bytes)
A Optimizer States: 65 bits (8 bytes)
A 96 bits (12 bytes) per parameter

A 65B model -> 780 GB of GPU memory -> 17x data center GPUs (34x consumer GPUs)

Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Language Models


https://www.youtube.com/watch?v=y9PHWGOa8HA

Motivation: Fine-tuning is expensive
A Full-parameter Fine-Tuning
A Update all model parameters — Require large GPU memory
d Parameter Efficient Fine-tuning (PEFT)
4 Only update a small subset of parameters, but not degrade the quality of the model
A e.g. Fine-tuning cost per parameter with LORA
d Weight: 16 bits
d Weight Gradient: ~0.4 bits
A Optimizer State: ~0.8 bits
A Adapter Weights: ~0.4 bits

A 17.6 bits per parameters

A 65B model -> 143 GB of GPU memory -> 4x data center GPUs (8x consumer GPUS)
Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Lanquage Models


https://www.youtube.com/watch?v=y9PHWGOa8HA

Motivation: Fine-tuning is expensive
A Full-parameter Fine-Tuning
A Update all model parameters — Require large GPU memory
d Parameter Efficient Fine-tuning (PEFT)
4 Only update a small subset of parameters, but not degrade the quality of the model
4 e.g. Fine-tuning cost per parameter with QLoRA
d Weight: 4 bits
d Weight Gradient: ~0.4 bit
A Optimizer State: ~0.8 bit
A Adapter Weights: ~0.4 bit

5.2 bits per parameters .,,,

®e
A 65B model -> 8668 42 GB of GPU memory -> 4#¢ 1x data center GPUs
Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Language Models


https://www.youtube.com/watch?v=y9PHWGOa8HA

Related works: PEFT

d PEFT Trade-offs

d Memory Efficiency, Parameter Efficiency, Model Performance, Training Speed, Inference Costs

d PEFT Methods
A Selective Methods:

[ select subsets of parameters to fine-tune

1 Reparameterization Method:

[ low-rank representation of model weights

d e.g. LORA
1 Additive Methods:

additive selective

BitFit LN Tuning
Attention Tuning

Ladder-Side
Tuning

Diff-Pruning
AttentionFusion

adapters Fish-Mask LT-SFT

FAR

3
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LeTS
LoRa

KronA
soft prompts

Intrinsic-SAID reparametrization-based

[ add trainable layers or parameters to model

A e.g. Adapters, Soft prompts (Prompt Tuning)

Source: Lialin et al. 2023, “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning”



https://arxiv.org/abs/2303.15647

Related works

Prompt tuning (Lester et al. 2021)
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Related works
Prefix tuning (Li and Liang 2021)

Fine-tuning

Transformer (Translation)

Transformer (Summarization)
i L] =] I B B = =

Transformer (Table-to-text)

il

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)
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Related works

Adapter (Houlsby et al. 2019)
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LORA

It is too expensive to fine-tune all parameters in a large model.

e During fine-tuning we initialized with pre-trained params ®,and &, + A®
updated to by following the objective: max} > log(ps(ylz,y<))

e We can hypothesize that the update matrices in LM adaptation have a
low “intrinsic rank”, leading to Low-Rank Adaptation (LoRA)

e For each downstream task, we do not need to store/deploy a different
set of A® where |®¢| = |AD]

R
Can we find a param-efficient & | & | + | A®
approach by low intrinsic rank?

10



LoRA in Training and Inference

Previous study shows that

e Pre-trained LLMs have a “low intrinsic dimension”

e LLMs can still learn efficiently despite a low-dim reparametrization

h /]

A TR

Pretrained
Weights r

W € R4x4 -‘
- AT,

xC————— 7]

Figure 1: Our reparametriza-

tion. We only train A and B.

During training: for pre-trained weight W, € R¥* W, is fixed

h=Wyx+ AWz = Wyx + BAx
BeR¥™, A cR™ r <« min(d, k)

During inference:
W =W,+ BA

11



Backward Computation of LORA

What is backward computation?

W, is the pre-trained weight matrix that is fixed during training. The gradients of
the loss £ with respect to A and B can be derived using the chain rule as follows:

oL 0L ok oL AL ok
0A Oh OA 0B 0Oh OB
_ oL O(Wyx + BAz) 0L O(Wyz + BAz)
Oh 0A ~ Oh OB
_ oL T oL T

These partial derivatives are computed during the backward pass of backpropagation
to update the parameters A and B accordingly.

12



Benefits of LORA

Applying LoRA to Transformer

e In principle, LoORA can be applied to any weight matrices in DL
e LoRA’s original paper only study changing the attention weights

. Wq, Wy, W, € IR @mode1 X dmodel
Benefits

e No need to track optimizer state for frozen params, smaller checkpoint
size (GPT-3: 1.2TB [before] — 350GB [training] — 35MB [inference])
e No additional inference latency

e speed up during training
13



Insights of LORA

How to apply LoRA to Transformer?

e Which weight matrices in Transformer should we apply LoRA to?

e Whatis the optimal rank for LORA? - We argue that increasing rank

does not cover more meaningful subspaces, which suggests that a
low-rank adaptation matrix is sufficient.

| # of Trainable Parameters = 18

—

Weight Type
Rank r

W, W, W,

Wq
8 8 8 8

WikiSQL (£0.3%)
MultiNLI (£0.1%)

704 700 73.0 732
91.0 90.8 91.0 913

| Weight Type | r=1 r=2 r=4]r=8|r=64
W, we |wo.w, o W, W, 733 737 | 138 | 735
o il WikaSQL(:0.3%) W, 606 705 | 704 | 700
12 | 737 MuliNLI (£0.1%) | W, W, | 913 914 913 | 917 | 91.4
913 | 913

14



Insights of LORA

Subspace similarity between different rank:

e Comparison r=8, r=64 after SVD decomposition, top singular vector
space similarity

e The top singular vector overlap significantly between r=8 and r=64,
while others do not

¢(Ar=64:Ar=8r ’:/)
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Insights of LORA

Subspace similarity between different rank:

e indicates that the top singular-vector directions of are the most useful,
while other directions potentially contain mostly random noises
accumulated during training

d(A - 64 A =64:1,J)
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Figure 4: Left and Middle: Normalized subspace similarity between the column vectors of A, —g4
from two random seeds, for both AW, and AW, in the 48-th layer. Right: the same heat-map
between the column vectors of two random Gaussian matrices. See Sec. G.1 for other layers. 16



Insights of LORA

Subspace similarity between different rank:

AW amplifies directions that are important but not emphasized in W
AW with larger r tends to pick directions already emphasized in W

AWy Random
d(Wq, Ar=4,1,)) O (Wq, Ar=g,1,J) Wy, Ar=64, iJ) & (Wq, Arand, I, J)
451
555
658
762

865
969
1072
1176
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0.100

Figure 8: Normalized subspace similarity between the singular directions of W, and those of AW,
with varying r and a random baseline. AW, amplifies directions that are important but not empha-
sized in W. AW with a larger r tends to pick up more directions that are already emphasized in
w.
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Experiments of LORA

o Settings

O Two Tasks
O Natural Language Understanding (NLU): RoBERTa, DeBERTa
a Subtasks: MNLI, SST-2, MRPC, ColLA, QNLI, QQP, RTE, STS-B
O Natural Language Generation (NLG): GPT-2, GPT-3
O Metrics: BLEU, NIST, MET, ROUGE-L, CIDEr

O Six Baselines
Q Fine-Tuning, Bias-only or BitFit, Prefix-embedding tuning
(PreEmbed), Prefix-layer tuning (PrelLayer), Adapter tuning, LoRA



Experiments:

e Baseline: Fine-Tune, Bias only, Prefix-embedding tuning, Prefix-layer

Experiments of LORA

tuning, adapter tuning
e Faster training, better performance

Method # of Trainable WikiSQL MNLI-m SAMSum
e Parameters | Accuracy (%) Accuracy (%) R1/R2/RL
GPT-3 175B (Fine-Tune) 175,255.8M 73.0 89.5 52.0/28.0/44.5
GPT-3 175B (Bias Only) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 175B (PrefixEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 175B (PrefixLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 175B (LoRA) 4.7M 73.4 91.3 52.1/28.3/44.3
GPT-3 175B (LoRA) 37.M 73.8 91.7 53.2/29.2/45.0

Table 1: Logical form validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched
and Rouge-1/2/L. on SAMSum achieved by different GPT-3 adaptation methods. LoRA performs
better than prior approaches, including conventional fine-tuning. The result on WikiSQL has a

fluctuation of +0.3% and MNLI-m +0.1%.

Method # of Trainable E2E
Parameters | BLEU NIST MET ROUGE-L CIDEr

GPT-2 M (Fine-Tune) 354.92M | 68.2 8.62 46.2 71.0 247
GPT-2 M (Adapter) 11.48M | 68.9 8.71  46.1 71.3 247
GPT-2 M (FT-Top2) 25.19M | 68.1 8.59 46.0 70.8 241
GPT-2 M (Prefix) 0.35M | 69.7 8.81 46.1 71.4 2.49
GPT-2 M (LoRA) 0.35M | 704 8.85 468 71.8 2.53
GPT-2 L (Fine-Tune) 774.03M | 68.5 8.78  46.0 69.9 2.45
GPT-2 L (Prefix) 0.77M | 70.3 8.85 46.2 71.7 247
GPT-2 L (LoRA) 0.77M | 70.4 8.89 46.8 72.0 2.47

Table 2: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LORA outperforms several baselines with comparable or

fewer trainable parameters.
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NLU Tasks

Experiments of LORA

LoRA enhances model adaptation with fewer parameters, ensuring both
efficiency and improved performance

NLG Tasks

Model & Method |# Trainable

’Paramclcrs I\/INLI SST-2 MRPC CoLA QNLI QQP RTE STS-Bj Avg.
RoBpase (FT)* 125.0M| 87.6 948 90.2 63.6 928 919 78.7 91.2 | 86.4
ROBhpse (BitFit)* 0.IM| 847 937 92.7 62.0 91.8  84.0 81.5 90.8 | 85.2
RoBhpase (Adptu)* 03M|87.140 94241 88.5411 60.844 93.141 90240 71.5427 89.74 3] 84.4
RoBypase (Adplb)* 09M 18734 94743 88.44; 62649 93.045 90.640 759425 90.34 1) 83
ROBpase (LORA) 8754395145 89.747 634415 93.3.3 9084, 86.6.7 915, ,4187.2
RoByye (FT)* ’ 355.0M| 90.2 96.4 90.9 68.0 94.7 92.2 86.6 924 | 88.9
ROBjyze (LORA) 0.8M[90.64> 96215 90.9:,> 68.2419 9495 91.64, 874,25 92.6, -] 89.0
RoByge (Adpt")f 3.0M[90.24 3 96143 90247 683110 94.8.> 9194 838429 92.1, 4 88.4
ROB]M‘SC (Adplp)‘i’ 0.8M 90.51,3 96.6i_3 89.7i|_1 67.8115 94.81_}. 91-7i.1 80.113,9 91.914 87.9
RoBlarge (AdeH)T 6.0M|89.94+5 96243 88.7429 66.54+44 94.742 92141 834411 91.04.14 87.8
ROBiurge (AdeH)T 0.8M190.343 96345 87.7417 663420 94742 91.541 729429 91.54 5] 88
ROB]mt (LORA)]L 90.61,1 96.21_5 90.2;“,(» 68.2i|,g 94.8t,5 91.6i,1 85.211,1 92.31,5

DeByxxi (FT)*
DCBXXI_ (LORA)

91.8

1500.0M
919,

97.2 92.0 72.0 96.0
96945 92.6.6 7244, 96.0.

92.7 93.9 92.9
929, 94.9.: 93.04

Model & Method # Trainable E2E NLG Challenge

Parameters | BLEU NIST MET ROUGE-L CIDEr
GPT-2 M (FT)* 354.92M 68.2 8.62 46.2 71.0 247

Lo aa-s cea P o o0
| 222 :: ::::::::‘Li* 1 1.;\q}n AQ.O Q."ll AA.I 7|.1 ')./n I

GPT-2 M (Adapter') 11.09M | 67316 850407 46.0:> 7074 24440
GPT-2 M (FTToP?)* 25.19M | 68.1 8.59 46.0 70.8 2.41
GPT-2 M (PreLayer)* 0.35M 69.7 8.81 46.1 714 2.49
GPT-2 M (LoRA) 0.35M | 704, 885, 468, 71844 2.53. 2
GPT-2 L (FT)* 774.03M 68.5 8.78 46.0 69.9 245
GPT-2L (AdaplerL) 0.88M | 69.11, 8.68.p; 463. 7144, 249, 9
GPT-2L (AdaplerL) 23.00M 68.9.*.'3 8.70._{.__()4 46.1 +.1 71 .3#2 2.451._.02
GPT-2 L (PreLayer)* 0.77M 70.3 8.85 46.2 71.7 247
GPT-2 L (LoRA) 0.77M | 704, 8.89. 468, 72.04 > 2474 0

Table 2: RoOBERTay,., ROBERTay, ., and DeBERTaxx;. with different adaptation methods on the
GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLIL, Matthew’s
correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better
for all metrics. * indicates numbers published in prior works. | indicates runs configured in a setup

similar to[Houlsby et al] (2019) for a fair comparison.

Table 3: GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable
or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates
numbers published in prior works.



Experiments of LORA

NLG Stress Test: Scale up to GPT-3 with 175B parameter

Not all methods benefit monotonically from
an increase in trainable parameters.

i a3 WikisSQL MultiNLI-matched
Model&Method # Trainable | WikiSQL MNLI-m SAMSum
Parameters | Acc. (%) Acc. (%) RI/R2/RL 0.7 0.92
= . Voo Ve
GPT-3 (FT) 1752558M | 738 895 52.0/28.0/44.5 3 8 el
GPT-3 (BitFit) 14.2M 71:3 91.0 51.3/27.4/43.5 5 0.70 0.90 Xk
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5 g Method * =
GPT-3 (PreLayer) 202M | 70.1 89.5  50.8/27.3/43.5 < 065 % 1 [ 0.88 P, )
GPT-3 (Adapter') 7.1IM 719 89.8 53.0/28.9/44.8 = PrefixEmbed
GPT-3 (Adapter'’) 40M | 732 915 53.2/29.0/45.1 3 0560 PrefixLaver ¢ gg
o
GPT-3 (LoRA) 47M | 734 91.7  53.8/29.8/45.9 2
GPT-3 (LoRA) 379M | 740 91.6  53.4/29.2/45.1 0:32 0.84
6 7 8 9 10 11 6 7 8 9 10 11
Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form logyp # Trainable Parameters log,, # Trainable Parameters
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results  Fjgyre 2: GPT-3 175B validation accuracy vs. number of trainable parameters of several adaptation

on WikiSQL have a fluctuation around +0.5%, MNLI-m around +0.1%, and SAMSum around

0.2/0.9/-0.1:F6F the thiee metiics. methods on WikiSQL and MNLI-matched. LoRA exhibits better scalability and task performance.

See[Section F.] for more details on the plotted data points.



Experiments of LORA

How well will LoRA perform in low(limited) training data?

Method | MNLI(m)-100  MNLI(m)-1k MNLI(m)-10k MNLI(m)-392K
GPT-3 (Fine-Tune) 60.2 85.8 88.9
GPT-3 (PrefixEmbed) 75.2 79.5
GPT-3 (PrefixLayer) 48 3 82.5 85.9
GPT-3 (LoRA) |63.8 I 85.6 89.2

Table 16: Validation accuracy of different methods on subsets of MNLI using GPT-3 175B. MNLI-
n describes a subset with n training examples. We evaluate with the full validation set. LoRA
performs exhibits favorable sample-efficiency compared to other methods, including fine-tuning.

PrefixEmbed barely performed better than random chance (37.6% vs. 33.3% accuracy).

PrefixLayer did perform better than PrefixEmbed but was still significantly worse compared to fine-tuning
and LoRA.

As the number of training examples increased, the performance gap between prefix-based approaches and
methods like fine-tuning or LORA decreased, suggesting that prefix-based approaches might not be
well-suited for very low-data scenarios in models like GPT-3.



Conclusion of LoRA

Conclusion:

[ Efficiency: LoRA enables cost-effective adaptation of large models by modifying
fewer parameters.

d Performance: Matches or exceeds fine-tuning across various tasks with fewer
trainable parameters.

d Scalability: Effective for giant models like GPT-3, making adaptation more
accessible.

d Low-Data Efficacy: Superior in low-data settings, reducing the need for large
datasets.

[ Zero Latency and Full Capacity: LoORA maintains model quality without adding
inference latency or reducing input sequence length.

[ Broad Applicability: LORA's principles are adaptable to various neural network

architectures beyond language models.
23



QLoRA

QLoRA = Quantized pre-train LLM + LoRA

Major innovations: BeAdagor] R ator
o 4-bit Normal Float Gptiiiar P —
o Double Quantization o C‘ ? ? %] ? ? il
o Page Optimizer Getm l l l oo ooo
4-bit storage data type - (11 [1 1 1]
Bfloat16 computational data type O T S

Figure 1: Different finetuning methods and their memory requirements. QLORA improves over LoRA by
quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

Reduces the average memory requirements of fine-tuning a 65B parameter
model from 780GB of GPU memory to 48GB on a single GPU.
Preserving performance compared to a 16- bit fully fine-tuned baseline.
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Model Quantization

Keep the model the same but reduce the number of bits.

« Post-Training Quantization (PTQ): converting the weights of
an already trained model to a lower precision without any
retraining. PTQ might degrade the model's performance.

« Quantization-Aware Training (QAT): integrates the weight
conversion process during the training stage. Results in
superior model performance. (QLoRA)

25



Model Quantization

Floating-point numbers:

float16 (fp16)

sign exponent (5 bit)

fraction (10 bit)

0 0 1 1 0 0 0 0 0 0 0
15 14 10
bfloat16
sign exponent (8 bit) fraction (7 bit)
[
0 0 1 il 1 1 1 0 0 0 0
15 14
IEEE 754 single—precision 32-bit float
sigln exponent (8 bit) fraction (23 bit)
[ 1 [
oj o 1|11 1 ]3]0 0 mms (o A S} 038 IR0 S0kl Ao 1 (ol (50 )81 (o8 (o ISl IO I o I8 ¥/ o)
31 30 23 22

26



Model Quantization

Example: use Absolute Maximum (absmax) to quantize a 32-bit
Floating Point (FP32) tensor into a Int8 tensor with range [-127,
127]:

E.g. Given FP32[1.2,-3.1, 0.8, 2.4, 5.4]

127
Xquant = round (max |X| ” X)

Scale Factor =127 / 5.4 = 23.5 (quantization constant)
max | X|

Xdequant —

: Xquant

127 New Int8 [28, -73, 19, 56, 127]

27



4-bit Normal Float Quantization

e Motivation: Weights in pretrain LLM usually has a zero-centered normal

distribution
e Advantage of NF-4: it is an information theoretically optimal quantization data

type for normally distributed data that yields better empirical results than 4-bit
Integers and 4-bit Floats

Computation process of NF-4 (k = 4):
e (1) Estimate the 16 + 1 quantiles of a theoretical N(O, 1) distribution

* (2) Normalized its value into [-1, 1] range
e (3) Quantize the input weight tensor into [-1, 1] range

(0 (#51) +or (533)

DN =

Estimate the 16 values qi through: g =

28



4-bit Normal Float Quantization

Exact values of the NF4 data type:

Normal distributions
Mean=0
Standard deviations = 1

[0.97,0.9,0.83,0.77,0.7,0.63,0.57]  [0.56, 0.62, 0.68, 0.73, 0.79, 0.85,0.91,0.97]  (Probability)
[-1.85,-1.29, -0.97, -0.73, -0.53, -0.34,-0.17]  [0.15, 0.3, 0.45, 0.62, 0.81,1.04, 1.34,1.85]  (Z-score)
[-1.85, -1.29, -0.97, -0.73, -0.53, -0.34, -0.17, 0, 0.15, 0.3, 0.45, 0.62, 0.81, 1.04, 1.34, 1.85] (Concatenation)

[-1. ,-0.7,-0.53,-0.39,-0.28,-0.18, -0.09, 0. , 0.08,0.16, 0.25, 0.34, 0.44, 0.56, 0.72, 1. ] (Normalisation)

Steps for generating the NF4 data type values:

1. Generate 8 evenly spaced values from 0.56 to 0.97 (Set I).

2. Generate 7 evenly spaced values from 0.57 to 0.97 (Set Il).

3. Calculate the z-score values for the probabilities generated in Step 1 and Step 2. For Set Il, calculate the negative
inverse of the z-scores.

4. Concatenate Set |, a zero value, and Set Il together.

5. Normalize the values by dividing them by the absolute maximum value.

29



4-bit Normal Float Quantization

Problems with the original quantization method:
Outliers in input tensor will lead to inefficient use of
guantization bins.

Solution (Block-wise Quantization):
We can chunk input tensor into n contiguous block of size B.
with their own quantization constant c.

If need more quantization constant, use double quantization, which
can help reduce the memory footprint of quantization constants

30



Double Quantization

To perform dequantization technique, we need to store the quantization constants.

Weight
16 bit
0.002-bit i
. n
Quantized J\ Absmax ' i erma
weight L~ . constant Absmax ) + e
- Quantize again an:t;m /- ‘
i ' S - 5 bit {
4 bit | - LI \| 0125 | Quantized
0.5 bit 2 ol
\ , | constant

1x 32-bit value for every 64
parameters

Image source: Democratizing Foundation Models via k-bit Quantization by Tim Dettmers

If we employed blockwise quantization, then we will have n quantization constants in
their original data type.
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Double Quantization

Motivation: While a small blocksize is required for precise 4-bit
guantization, it also has a considerable overhead.

e E.g. using 32-bit constants and a blocksize of 64, quantization constants add
32/64 = 0.5 bits per parameter on average.

Double Quantization (DQ) quantized the quantization constants
for additional memory savings.

32



Paged Optimizers

Motivation: When training LLMs, GPU’s OOM error is a common

problem.
CPU GPU
Py s

Paged optimizers are used to manage memory usage during training.

33
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Paged Optimizers

Paged Optimizers use the NVIDIA unified memory feature which
does page-to-page transfers between the CPU and GPU for
error-free GPU processing when the GPU occasionally runs
out-of-memory.

e The feature works like regular memory paging between CPU RAM and the
disk.

e Feature allocates paged memory for the optimizer states which are then
automatically evicted to CPU during GPU OOM and back into GPU memory
when memory is needed in the optimizer update step

34



Paged Optimizers

B Inputgradient [l Optimizer [ Weight gradient [l Adapters [l Model

100%
75%
50%

25%

0%

7B (6.9 GB) 13B (11.3 GB) 33B (24.7 GB) 65B (45.0 GB)

LLaMA model size

Figure 6: Breakdown of the memory footprint of different LLaMA models. The input gradient size is for batch
size 1 and sequence length 512 and is estimated only for adapters and the base model weights (no attention).
Numbers on the bars are memory footprint in MB of individual elements of the total footprint. While some
models do not quite fit on certain GPUs, paged optimzier provide enough memory to make these models fit.
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QLoRA

Given all above components, QLORA for a single linear layer in the
quantized based model with a single LoRA adapter is defined as follows;

YBFI6 — XBFI6qoubleDequant(ciP32, Kbt WNF4) 4 XBFI6] BF16] BFI6
where doubleDequant(-) is defined as:

doubleDequant ([P, 5, W) = dequant(dequant(ci™?2, c5P), Wit) = WBFI®

NF4 -> W;

FP8->c,,

blocksize of 64 -> W (for higher quantization precision);
blocksize of 256 for c, (to conserve memory)

36



64

63

RougeL

61

60

Experiments of QLoRA

« Default LORA Hyperparameters do not match 16-bit performance
» 4-bit NormalFloat (NF4) yield better performance than 4-bit Float (FP4)

o® vss | 4-bit LLaMA s
oiee / Table 2: Pile Common Crawl mean
> 066 o . perplexity for different data types
T £ oes ] / — for 125M to 13B OPT, BLOOM,
g r / LLaMA, and Pythia models.
= 0.64
bite g 063 4 Data type Mean PPL
L & Eoe Int4 34.34
g Data type Float4 (E2M1) 3 1 07
o6t I Float4 (E3MO0) 29.48
0.60 =—cNFloat-=200 NFloat4 + DQ 27.41
» S & 0&\ £ 1010 Tol
oVé& &@g & & & Total model bits
= s 5
(024 2
Model
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Experiments of QLoRA

« k-bit QLORA matches 16-bit full fine-tuning and 16-bit LORA performance

Table 4: Mean 5-shot MMLU test accuracy for LLaMA 7-65B models finetuned with adapters on Alpaca and
FLAN v2 for different data types. Overall, NF4 with double quantization (DQ) matches BFloat16 performance,
while FP4 is consistently one percentage point behind both.

Mean 5-shot MMLU Accuracy

LLaMA Size 7B 13B 33B 65B Mean
Dataset Alpaca FLANv2 Alpaca FLANv2 Alpaca FLANv2 Alpaca FLAN v2
BFloat16 38.4 45.6 47.2 50.6 7.7 60.5 61.8 62.5 53.0
Float4 3.2 44.0 47.3 50.0 55.9 58.5 61.3 63.3 52.2
NFloat4 + DQ  39.0 44.5 47.5 50.7 57.3 59.2 61.8 63.9 53.1
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Conclusion of QLoRA

Conclusion:

® QLoRA can replicate 16-bit full fine-tuning performance with a 4-bit base
model and Low-rank Adapters.

® |[t's the first method that enables fine-tuning of 33B parameter models on a
single consumer GPU and 65B parameter models on a single professional
GPU without degrading performance relative to a full finetuning baseline.

® (QLoRA's best 33B model, trained on the Open Assistant dataset, can rival
ChatGPT on the Vicuna benchmark, making fine-tuning widespread and
accessible, especially for researchers with limited resources.
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Conclusion of QLoRA

Limitations:

Unable to establish that QLoRA matches 16-bit fine-tuning performance at 33B
and 65B scales due to immense resource cost.

Did not evaluate on BigBench, RAFT, and HELM benchmarks, making it unclear if
evaluations generalize to these benchmarks.

The performance likely depends on how similar the fine-tuning data is to the
benchmark dataset, highlighting the need for better benchmarks and evaluation
metrics that reflect real-world applications.

Did not evaluate different bit-precisions or other PEFT methods beyond LoRA,
which might yield better performance or enable more aggressive quantization.
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LoRA Code Walkthrough

class LoRALayer():
def __init_ (
self, .
ey e Define the LoRA Layer
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,

self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: X
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights



LoRA Code Walkthrough

class Linear(nn.Linear, LoRALayer):

# LoRA implemented in a dense layer

def __init_ (
self,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
merge_weights: bool = True,
*kkwargs

nn.Linear.__init__(self, in_features, out_features, xxkwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)

self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters

if F >0t

self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix

self.weight.requires_grad = False

sel(f.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)

LoRA implement in the
linear layer

Initialize the LoRA A and
B layer

Freeze the pre-trained
weight matrix
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LoRA Code Walkthrough

def train(self, mode: bool = True):

def

def T(w):
return w.transpose(@, 1) if self.fan_in_fan_out else w
nn.Linear.train(self, mode)
if mode:
if self.merge_weights and self.merged:
# Make sure that the weights are not merged
if self.r > 0:
self.weight.data —= T(self.lora_B @ self.lora_A) * self.scaling
self.merged = False
else:
if self.merge_weights and not self.merged:
# Merge the weights and mark it
if self.r > 0:
self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
self.merged = True

forward(self, x: torch.Tensor):
def T(w):

return w.transpose(@, 1) if self.fan_in_fan_out else w
if self.r > @ and not self.merged:

result = F.linear(x, T(self.weight), bias=self.bias)
result += (self.lora_dropout(x) @ self.lora_A.transpose(@, 1) @ self.lora_B.transpose(@, 1)) x self.scaling

return result
else:
return F.linear(x, T(self.weight), bias=self.bias)

® Train module merge the
weights of LoRA layer
into the pre-train weights

® Given aninput x, the
forward process compute
the sum of the result
from two branches:

h =Wy + AWx = Wyx + BAx
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