
Efficient fine-tuning for
Large Models: LoRA & QLoRA

Jiaqi Song Xianwei Zou Hanshi Sun Steven Kolawole

1In class Presentation on March 13th, 2024

● Motivation & Related works (PEFT)
● LoRA Details
● QLoRA Details

○ Quantization & 4-bit Normal Float Quantization
○ Double Quantization
○ Paged Optimizers

● Result and discussion
● LoRA Code Walkthrough

2

Content

❏ Full-parameter Fine-Tuning

❏ Update all model parameters → Require large GPU memory

❏ e.g. 16-bit Fine-tuning cost per parameter

❏ Weight: 16 bits (2 bytes)

❏ Weight Gradient: 16 bits (2 bytes)

❏ Optimizer States: 65 bits (8 bytes)

❏ 96 bits (12 bytes) per parameter

❏ 65B model -> 780 GB of GPU memory -> 17x data center GPUs (34x consumer GPUs)

3

Motivation: Fine-tuning is expensive

Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Language Models

https://www.youtube.com/watch?v=y9PHWGOa8HA

❏ Full-parameter Fine-Tuning

❏ Update all model parameters → Require large GPU memory

❏ Parameter Efficient Fine-tuning (PEFT)

❏ Only update a small subset of parameters, but not degrade the quality of the model

❏ e.g. Fine-tuning cost per parameter with LoRA

❏ Weight: 16 bits

❏ Weight Gradient: ~0.4 bits

❏ Optimizer State: ~0.8 bits

❏ Adapter Weights: ~0.4 bits

❏ 17.6 bits per parameters

❏ 65B model -> 143 GB of GPU memory -> 4x data center GPUs (8x consumer GPUS)
4

Motivation: Fine-tuning is expensive

Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Language Models

https://www.youtube.com/watch?v=y9PHWGOa8HA

❏ Full-parameter Fine-Tuning

❏ Update all model parameters → Require large GPU memory

❏ Parameter Efficient Fine-tuning (PEFT)

❏ Only update a small subset of parameters, but not degrade the quality of the model

❏ e.g. Fine-tuning cost per parameter with QLoRA

❏ Weight: 4 bits

❏ Weight Gradient: ~0.4 bit

❏ Optimizer State: ~0.8 bit

❏ Adapter Weights: ~0.4 bit

❏ 5.2 bits per parameters

❏ 65B model -> 780GB 42 GB of GPU memory -> 17x 1x data center GPUs
5

Motivation: Fine-tuning is expensive

Tim Dettmers | QLoRA: Efficient Finetuning of Quantized Large Language Models

!!!

https://www.youtube.com/watch?v=y9PHWGOa8HA

❏ PEFT Trade-offs

❏ Memory Efficiency, Parameter Efficiency, Model Performance, Training Speed, Inference Costs

❏ PEFT Methods

❏ Selective Methods:

❏ select subsets of parameters to fine-tune

❏ Reparameterization Method:

❏ low-rank representation of model weights

❏ e.g. LoRA

❏ Additive Methods:

❏ add trainable layers or parameters to model

❏ e.g. Adapters, Soft prompts (Prompt Tuning)
6

Related works: PEFT

Source: Lialin et al. 2023, “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning”

https://arxiv.org/abs/2303.15647

Prompt tuning (Lester et al. 2021)

7

Related works

Prefix tuning (Li and Liang 2021)

8

Related works

Adapter (Houlsby et al. 2019)

9

Related works

It is too expensive to fine-tune all parameters in a large model.

• During fine-tuning we initialized with pre-trained params and

updated to by following the objective:

• We can hypothesize that the update matrices in LM adaptation have a

low “intrinsic rank”, leading to Low-Rank Adaptation (LoRA)

• For each downstream task, we do not need to store/deploy a different

set of where

10

LoRA

Can we find a param-efficient

approach by low intrinsic rank?

Previous study shows that

• Pre-trained LLMs have a “low intrinsic dimension”

• LLMs can still learn efficiently despite a low-dim reparametrization

11

LoRA in Training and Inference

During training: for pre-trained weight , is fixed

During inference:

What is backward computation?

 is the pre-trained weight matrix that is fixed during training. The gradients of

the loss with respect to A and B can be derived using the chain rule as follows:

These partial derivatives are computed during the backward pass of backpropagation

to update the parameters A and B accordingly.

12

Backward Computation of LoRA

Applying LoRA to Transformer

• In principle, LoRA can be applied to any weight matrices in DL

• LoRA’s original paper only study changing the attention weights

Benefits

• No need to track optimizer state for frozen params, smaller checkpoint

size (GPT-3: 1.2TB [before] → 350GB [training] → 35MB [inference])

• No additional inference latency

• speed up during training
13

Benefits of LoRA

How to apply LoRA to Transformer?

• Which weight matrices in Transformer should we apply LoRA to?
• What is the optimal rank for LoRA? - We argue that increasing rank

does not cover more meaningful subspaces, which suggests that a
low-rank adaptation matrix is sufficient.

14

Insights of LoRA

Subspace similarity between different rank:

• Comparison r=8, r=64 after SVD decomposition, top singular vector
space similarity

• The top singular vector overlap significantly between r=8 and r=64,
while others do not

15

Insights of LoRA

Subspace similarity between different rank:

• indicates that the top singular-vector directions of are the most useful,
while other directions potentially contain mostly random noises
accumulated during training

16

Insights of LoRA

Subspace similarity between different rank:

• ΔW amplifies directions that are important but not emphasized in W
• ΔW with larger r tends to pick directions already emphasized in W

17

Insights of LoRA

❏ Settings
❏ Two Tasks

❏ Natural Language Understanding (NLU): RoBERTa, DeBERTa
❏ Subtasks: MNLI, SST-2, MRPC, CoLA, QNLI, QQP, RTE, STS-B

❏ Natural Language Generation (NLG): GPT-2, GPT-3
❏ Metrics: BLEU, NIST, MET, ROUGE-L, CIDEr

❏ Six Baselines
❏ Fine-Tuning, Bias-only or BitFit, Prefix-embedding tuning

(PreEmbed), Prefix-layer tuning (PreLayer), Adapter tuning, LoRA

Experiments of LoRA

Experiments:

• Baseline: Fine-Tune, Bias only, Prefix-embedding tuning, Prefix-layer
tuning, adapter tuning

• Faster training, better performance

19

Experiments of LoRA

Experiments of LoRA

NLU Tasks

NLG Tasks

LoRA enhances model adaptation with fewer parameters, ensuring both
efficiency and improved performance

Experiments of LoRA
NLG Stress Test: Scale up to GPT-3 with 175B parameter

Not all methods benefit monotonically from
an increase in trainable parameters.

Experiments of LoRA
How well will LoRA perform in low(limited) training data?

● PrefixEmbed barely performed better than random chance (37.6% vs. 33.3% accuracy).
● PrefixLayer did perform better than PrefixEmbed but was still significantly worse compared to fine-tuning

and LoRA.
● As the number of training examples increased, the performance gap between prefix-based approaches and

methods like fine-tuning or LoRA decreased, suggesting that prefix-based approaches might not be
well-suited for very low-data scenarios in models like GPT-3.

Conclusion:

❏ Efficiency: LoRA enables cost-effective adaptation of large models by modifying
fewer parameters.

❏ Performance: Matches or exceeds fine-tuning across various tasks with fewer
trainable parameters.

❏ Scalability: Effective for giant models like GPT-3, making adaptation more
accessible.

❏ Low-Data Efficacy: Superior in low-data settings, reducing the need for large
datasets.

❏ Zero Latency and Full Capacity: LoRA maintains model quality without adding
inference latency or reducing input sequence length.

❏ Broad Applicability: LoRA's principles are adaptable to various neural network
architectures beyond language models.

23

Conclusion of LoRA

QLoRA = Quantized pre-train LLM + LoRA

● Major innovations:
○ 4-bit Normal Float
○ Double Quantization
○ Page Optimizer

● 4-bit storage data type
● Bfloat16 computational data type

➔ Reduces the average memory requirements of fine-tuning a 65B parameter
model from 780GB of GPU memory to 48GB on a single GPU.

➔ Preserving performance compared to a 16- bit fully fine-tuned baseline.
24

QLoRA

Keep the model the same but reduce the number of bits.

● Post-Training Quantization (PTQ): converting the weights of
an already trained model to a lower precision without any
retraining. PTQ might degrade the model's performance.

● Quantization-Aware Training (QAT): integrates the weight
conversion process during the training stage. Results in
superior model performance. (QLoRA)

25

Model Quantization

Floating-point numbers:

26

Model Quantization

Example: use Absolute Maximum (absmax) to quantize a 32-bit
Floating Point (FP32) tensor into a Int8 tensor with range [-127,
127]:

 E.g. Given FP32 [1.2, -3.1, 0.8, 2.4, 5.4]

Scale Factor = 127 / 5.4 = 23.5 (quantization constant)

New Int8 [28, -73, 19, 56, 127]

27

Model Quantization

• Motivation: Weights in pretrain LLM usually has a zero-centered normal
distribution

• Advantage of NF-4: it is an information theoretically optimal quantization data
type for normally distributed data that yields better empirical results than 4-bit
Integers and 4-bit Floats

Computation process of NF-4 (k = 4):

• (1) Estimate the 16 + 1 quantiles of a theoretical N(0, 1) distribution
• (2) Normalized its value into [-1, 1] range
• (3) Quantize the input weight tensor into [-1, 1] range

Estimate the 16 values qi through:
28

 4-bit Normal Float Quantization

Exact values of the NF4 data type:

29

 4-bit Normal Float Quantization

Problems with the original quantization method:

Outliers in input tensor will lead to inefficient use of

quantization bins.

Solution (Block-wise Quantization):

We can chunk input tensor into n contiguous block of size B.

with their own quantization constant c.

If need more quantization constant, use double quantization, which

can help reduce the memory footprint of quantization constants
30

 4-bit Normal Float Quantization

To perform dequantization technique, we need to store the quantization constants.

31

Double Quantization

If we employed blockwise quantization, then we will have n quantization constants in
their original data type.

Motivation: While a small blocksize is required for precise 4-bit
quantization, it also has a considerable overhead.

• E.g. using 32-bit constants and a blocksize of 64, quantization constants add
32/64 = 0.5 bits per parameter on average.

Double Quantization (DQ) quantized the quantization constants
for additional memory savings.

32

Double Quantization

Motivation: When training LLMs, GPU’s OOM error is a common
problem.

33

Paged Optimizers

Paged optimizers are used to manage memory usage during training.

Paged Optimizers use the NVIDIA unified memory feature which
does page-to-page transfers between the CPU and GPU for
error-free GPU processing when the GPU occasionally runs
out-of-memory.

• The feature works like regular memory paging between CPU RAM and the
disk.

• Feature allocates paged memory for the optimizer states which are then
automatically evicted to CPU during GPU OOM and back into GPU memory
when memory is needed in the optimizer update step

34

Paged Optimizers

35

Paged Optimizers

Given all above components, QLoRA for a single linear layer in the
quantized based model with a single LoRA adapter is defined as follows;

36

QLoRA

● NF4 -> W;
● FP8 -> c

2
;

● blocksize of 64 -> W (for higher quantization precision);
● blocksize of 256 for c

2
 (to conserve memory)

• Default LoRA Hyperparameters do not match 16-bit performance
• 4-bit NormalFloat (NF4) yield better performance than 4-bit Float (FP4)

37

Experiments of QLoRA

• k-bit QLoRA matches 16-bit full fine-tuning and 16-bit LoRA performance

38

Experiments of QLoRA

Conclusion:

● QLoRA can replicate 16-bit full fine-tuning performance with a 4-bit base

model and Low-rank Adapters.

● It's the first method that enables fine-tuning of 33B parameter models on a

single consumer GPU and 65B parameter models on a single professional

GPU without degrading performance relative to a full finetuning baseline.

● QLoRA's best 33B model, trained on the Open Assistant dataset, can rival

ChatGPT on the Vicuna benchmark, making fine-tuning widespread and

accessible, especially for researchers with limited resources.

39

Conclusion of QLoRA

Limitations:

● Unable to establish that QLoRA matches 16-bit fine-tuning performance at 33B

and 65B scales due to immense resource cost.

● Did not evaluate on BigBench, RAFT, and HELM benchmarks, making it unclear if

evaluations generalize to these benchmarks.

● The performance likely depends on how similar the fine-tuning data is to the

benchmark dataset, highlighting the need for better benchmarks and evaluation

metrics that reflect real-world applications.

● Did not evaluate different bit-precisions or other PEFT methods beyond LoRA,

which might yield better performance or enable more aggressive quantization.

40

Conclusion of QLoRA

● Define the LoRA Layer

41

LoRA Code Walkthrough

● LoRA implement in the

linear layer

● Initialize the LoRA A and

B layer

● Freeze the pre-trained

weight matrix

42

LoRA Code Walkthrough

● Train module merge the

weights of LoRA layer

into the pre-train weights

● Given an input x, the

forward process compute

the sum of the result

from two branches:

43

LoRA Code Walkthrough

44

Thanks

