
JAX
Compiling machine learning 

programs via high-level tracing



Differentiable Programming in ML and Scientific Computing

● Differentiable Programming
○ Auto gradient computation

● Application in Machine Learning
○ Gradients are crucial for model optimization

● Application in Scientific Computing
○ Gradients are crucial for optimization, estimation, etc



Motivation

● Limitations of Existing Frameworks
○ Pytorch, Tensorflow: no native support for various hardware (TPU)
○ Performance bottlenecks

● Challenges with Numerical Computing Libraries
○ Numpy: no native auto differentiation 
○ Manual implementation of gradients

● Complexity of Hardware-Specific Optimization
○ Requires deep knowledge of hardware-specific optimizations



Overview

● Automatic Differentiation
● Functional Programming

○ Work with pure and statically-composed functions
● Interoperability with NumPy
● XLA Compilation

○ GPU
○ TPU

● 4 main transformations
○ grad(): automatically differentiate a function
○ vmap(): automatically vectorize operations
○ pmap(): parallel computation of SPMD programs
○ jit(): transform a function into a JIT-compiled version



Functional Programming

● Functional Programming
● Pure

○ No side effects
○ Referential transparency

● Statically-Composed
○ Static data dependency graph
○ A set of primitive functions



JAX Example

Computations are expressed as transformations on functions



Pytorch Comparison

Imperative programming, users define and execute computations dynamically



Tensorflow Comparison

Symbolic programming, users define computational graphs that represent 
mathematical operations



Transformations: grad()

grad(): Automatically differentiate a function



Transformations: vmap()

vmap(): Automatically vectorize operations



Transformations: pmap()

pmap(): Enable parallel computation of Single Program, Multiple Data (SPMD) 
programs



Transformations: jit()

jit(): Transform a function into a Just-In-Time (JIT)-compiled version



JAX tracing with Jaxprs: concepts

● Jaxpr
○ Intermediate representation
○ Use python interpreter to get statically-typed expressions

● Structure

○ Parameters: constvars ; invars
○ Equations
○ Output



JAX tracing with Jaxprs: example



JAX tracing with Jaxprs: handling control flow and function



JAX tracing with Jaxprs: conditionals



JAX tracing with Jaxprs: XLA_call



JAX tracing with Jaxprs: other higher-order primitives

- While
- Scan (loop over fixed size array)
- XLA_pmap



JAX - Introduction

- Just-in-time (JIT) compiler

- Convert pure Python and Numpy into high-performance code

- Run efficiently on various accelerators (CPUs, GPUs, TPUs)

- Write easily with Python while achieving significant speedups



JAX - Method

- Only uses CPU
- No autodiff
- Not JIT compilation



JAX - Method

- Could use GPU and TPU via XLA
- Autodiff
- JIT compilation
- Same API as Numpy



JAX - Method

Python function => JAX Intermediate Representation

- Autodiff
- JIT compilation
- Parallelization
- Batching



JAX - Design



Operator Fusion Mechanisms in JAX (XLA)



Instruction Fusion

Rules:

- Not expensive operations(e.g., convolution, sort, all reduce, etc.) 

- Not too large for the GPU

- Not to exceed GPU hardware limits(e.g., threads per block, shared 
memory per block, etc.)



Fusion Merger

- Merge fusion instructions 

- Reduce memory bandwidth requirements and 
kernel launch overhead

Rules:

- The fusion would not increase bytes transferred

- Producer operations are fusible with all consumers



Sibling Fusion

- Merge fusion instructions 

- Reduce memory bandwidth requirements, because 
common input parameters have to be read only 
once



Producer-consumer Fusion

- Reduces memory bandwidth requirements by 
eliminating one read from memory

Rules:

- Sibling fusion and producer-consumer fusion can 
usually meet the fusion constraints at the same 
time. XLA will select the one that can give more 
fusion opportunities for later fusion optimizations

- Sibling has a higher priority over 
producer-consumer by default



Evaluation

Truncated Newton-CG optimization on CPU
● a CPU benchmark
● performs approximate Newton-Raphson updates using a 

conjugate gradient (CG) algorithm in its inner loop
● single thread
● on CPU



Evaluation

Speed up with example optimization problems



Evaluation

Training a convolutional network on GPU
● an all-conv CIFAR-10 network
● only convolutions and ReLU activations
● JAX-compiled a single stochastic gradient descent (SGD) 

update step
● Invoked from python code
● compared with TensorFlow
● CUDA 8 driver 384.111 on an HP Z420 workstation



Evaluation

Training a convolutional network on GPU



Evaluation

Cloud TPU scalability
● a Cloud TPU configuration with four chips and two cores 

per chip
● JAX parallelization of global batch on Cloud TPU cores 

exhibits linear speedup



Evaluation

Cloud TPU scalability
● JAX parallelization 

of global batch on 
Cloud TPU cores 
exhibits linear 
speedup



Evaluation

Cloud TPU scalability
● on-chip communication 

is faster than between 
chips


