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Motivation
● Similarity Search: applications in ML, retrieval, and with genAI -> RAG. 
● KNN -> ANN: computational complexity vs. search accuracy.

Figure: https://medium.com/@ma-korotkov/a-gentle-introduction-to-vector-search-dc6e54e34907
2



Motivation for Navigable Small Worlds (NSW)
Six degrees of separation experiments run by Milgram in the 1960s. 

Figure: https://mooreniemi.github.io/2022/12/05/scenic-tour-of-hnsw.html 
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ANN algorithm: Navigable Small Worlds (NSW)

● Polylogarithmic search and insertion, better for high dimensional large dataset

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37 
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ANN algorithm: Navigable Small Worlds (NSW)

● Greedy search can be trapped in local optimum (early stopping) 

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37 

Both neighbors of 
the current node 
are further away 
from the query.
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NSW Graph Construction

● Insert random points and link edges to M nearest neighbors (search)

● Longer edges are likely created at the beginning phase of graph construction

 – “later become bridges between the network hubs that keep the overall graph connectivity 
and allow the logarithmic scaling of the number of hops during greedy routing.”

(M = 2)
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Data structure inspiration: Skip Lists

● O(log n) time complexity on average for both insertion and search

● Layered format with longer edges in the highest layers (for fast search) and 
shorter edges in the lower layers (for accurate search).

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37 
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HNSW: Hierarchical Navigable Small Worlds

(dense, shorter edges)

(sparse, longer edges)

HNSW constructs 
multiple layers of 
proximity NSW 
graphs.

random 
entry pointquery
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HNSW: NSW + Skip List
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From NSW: 

- Zoom-out, then zoom-in (polylogarithmic) => zoom-in first in a graph 
(logarithmic)

From skip list: 

- Separate the edges according to their length scale into different layers

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37 



HNSW Algorithm
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1. Search
2. Insertion
3. Candidate selection heuristic



Search
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Inputs:

1. A query
2. A constructed HNSW 

graph

Outputs:

- K nearest neighbors to 
the query

Query

Output



Search

1. Starts from the highest layer, by 
randomly choosing a starting enter 
point
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Entry point



Search

2. Proceeds to one level below each time, to 
find the local nearest neighbor among that 
layer nodes
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Entry point



Search

2. Return K nearest neighbors found on the 
lowest layer
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Entry point



Insertion
Insert nodes to the HNSW graph one-by-one

Inputs:

- HNSW
- Q, a new node
- efConstruction, size of the dynamic candidate list
- L, the number of layers
- mL, the normalization factor
- M, number of established edges
- Mmax: maximum number of edges for each element per layer
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● l = 1: the node can only be 
found at layer 0 and layer 1

● mL = 0: the vectors are 
inserted at layer 0 only

Insertion
Step 1: assign an integer l, the maximum layer where the node can present

- The number of layers l for every node is chosen randomly with exponentially 
decaying probability distribution
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Insertion: Step 1

“To achieve the optimum performance advantage of the controllable hierarchy, the 
overlap between neighbors on different layers has to be small.”

mL value tradeoff:

● a smaller mL: more traversals on each layer
● a larger mL: more overlaps

Choose mL = 1/ln(M)
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Insertion: Step 1
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Insertion

Step 2: greedy search

1. Greedily search for the nearest node from the upper layer (efConstruction=1)
2. Use it as an entry point to the next layer until reaching layer l
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The node to insert
Entry point

Nearest neighbor



Insertion: Step 2
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Insertion

Step 3: connect to the current graph

1. Insert the node starting from the 
layer l

2. Greedily search for 
efConstruction nearest 
neighbors

3. Select M nodes from the 
efConstruction node set and 
build edges
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The node to insert

The edge connection is constrained by Mmax in each layer



Insertion

Step 3: connect to the current graph

4. Each of found efConstruction 
nodes acts as an entry point

5. Terminate after building edges in 
layer 0
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The node to insert

The edge connection is constrained by Mmax in each layer



Insertion: Step 3
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Search Layer

Obtain the approximate ef nearest 
neighbors in layer lc

- Used in NSW
- Allow discarding candidates for 

evaluation
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Candidate Selection Simple

Q: Which M nodes to take out of 
efConstruction candidates?

A: Naive way – take M closest 
candidates

Here X will be connected to B and C if 
M = 2.

However, ideally it can be better for 
navigation if the region A and B can be 
connected. 26



Candidate Selection Heuristic

The heuristic considers both:

- The closest distances between nodes
- The connectivity of different regions on 

the graph
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Complexity Analysis

Search takes O(logn) time in total

Insertion of a single vertex: O(logn)

HNSW construction requires O(n * logn) time in total
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Implementation
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https://github.com/nmslib/hnswlib/blob/3f3429661187e4c24a490a0f148fc6bc89042b3d/examples/python/example_search.py 



Evaluation - Implementation

● HNSW implementation uses custom distance functions together with C-style 
memory management.

● Utilized nmslib implementation of sw-graph for NSW.

● Compare with the most up-to-date SOTA.

● Compare with the SOTA in Euclid Spaces with open-source implementation.

30



Evaluation - Method

● Comparison with Baseline NSW

● Comparison in Euclid Spaces

● Comparison in General Space

● Comparison with product quantization based algorithms. 
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Evaluation - HNSW vs. Baseline NSW
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Evaluation - Euclid Spaces - Algorithms to Compare

● Baseline NSW Algorithm
● FLANN
● Annoy
● VP-tree
● FALCONN
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Evaluation - Euclid Spaces - Datasets
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Evaluation - Euclid Spaces
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Evaluation - General Spaces - Purpose & Algorithms

● Baseline NSW algorithm has several problems on low dimensional datasets 
as suggested in the paper "Permutation search methods are efficient, yet 
faster search is possible."

● VP-tree
● Permutation Techniques (NAPP & Brute Force Filtering)
● Baseline NSW Algorithm
● NNDescent-produced proximity graphs
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Evaluation - General Spaces - Datasets
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Evaluation - General Spaces
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Evaluation - HNSW vs product quantization based algorithms

● PQ-Algorithm: SOTA on billion scale datasets.
● Compare HNSW with SOTA PQ Algorithm in the library: Faiss.
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Conclusion

● HNSW provides a groundbreaking approach to nearest neighbor search, 
balancing speed and accuracy effectively even in challenging, 
high-dimensional spaces.

● The HNSW graph demonstrates robustness to various dataset that was not 
solvable by baseline NSW. It maintains good performance across different 
types of datasets without significant tradeoffs.

● This method sets a new benchmark for nearest neighbor searches, offering 
significant implications for machine learning and data retrieval.
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Limitations

● Constructing and maintaining the HNSW graph can consume significant 
memory, especially for large datasets. This can limit the scalability of the 
method on memory-constrained systems or for applications with extremely 
large datasets.

● The search in the HNSW structure always starts from the top layer, thus the 
structure cannot be easily made distributed like baseline NSW.
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Future Work

● The number of added connections per layer M can be a meaningful 
parameter to tune that strongly affects the construction of the index, thus 
might improve efficiency and effectiveness of HNSW.

● It would also be interesting to compare HNSW on the full 1B SIFT and 1B 
DEEP datasets and with functionalities such as element updates and 
removal. 

● Design a distributed pipeline for speedup and memory optimization.
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Thanks!
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