
Efficient and robust approximate nearest neighbor
search using Hierarchical Navigable Small World
(HNSW) graphs

Hu, Tong; Liu, Jiarui; Ma, Christina

4/22/24

1

Motivation
● Similarity Search: applications in ML, retrieval, and with genAI -> RAG.
● KNN -> ANN: computational complexity vs. search accuracy.

Figure: https://medium.com/@ma-korotkov/a-gentle-introduction-to-vector-search-dc6e54e34907
2

Motivation for Navigable Small Worlds (NSW)
Six degrees of separation experiments run by Milgram in the 1960s.

Figure: https://mooreniemi.github.io/2022/12/05/scenic-tour-of-hnsw.html
3

High clustering coefficient High clustering coefficient Low clustering coefficient
High distance Low distance Low distance

ANN algorithm: Navigable Small Worlds (NSW)

● Polylogarithmic search and insertion, better for high dimensional large dataset

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37
4

ANN algorithm: Navigable Small Worlds (NSW)

● Greedy search can be trapped in local optimum (early stopping)

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37

Both neighbors of
the current node
are further away
from the query.

5

NSW Graph Construction

● Insert random points and link edges to M nearest neighbors (search)

● Longer edges are likely created at the beginning phase of graph construction

 – “later become bridges between the network hubs that keep the overall graph connectivity
and allow the logarithmic scaling of the number of hops during greedy routing.”

(M = 2)

6

Data structure inspiration: Skip Lists

● O(log n) time complexity on average for both insertion and search

● Layered format with longer edges in the highest layers (for fast search) and
shorter edges in the lower layers (for accurate search).

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37
7

HNSW: Hierarchical Navigable Small Worlds

(dense, shorter edges)

(sparse, longer edges)

HNSW constructs
multiple layers of
proximity NSW
graphs.

random
entry pointquery

8

HNSW: NSW + Skip List

9

From NSW:

- Zoom-out, then zoom-in (polylogarithmic) => zoom-in first in a graph
(logarithmic)

From skip list:

- Separate the edges according to their length scale into different layers

Figure: https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37

HNSW Algorithm

10

1. Search
2. Insertion
3. Candidate selection heuristic

Search

11

Inputs:

1. A query
2. A constructed HNSW

graph

Outputs:

- K nearest neighbors to
the query

Query

Output

Search

1. Starts from the highest layer, by
randomly choosing a starting enter
point

12

Entry point

Search

2. Proceeds to one level below each time, to
find the local nearest neighbor among that
layer nodes

13

Entry point

Search

2. Return K nearest neighbors found on the
lowest layer

14

Entry point

Insertion
Insert nodes to the HNSW graph one-by-one

Inputs:

- HNSW
- Q, a new node
- efConstruction, size of the dynamic candidate list
- L, the number of layers
- mL, the normalization factor
- M, number of established edges
- Mmax: maximum number of edges for each element per layer

15

● l = 1: the node can only be
found at layer 0 and layer 1

● mL = 0: the vectors are
inserted at layer 0 only

Insertion
Step 1: assign an integer l, the maximum layer where the node can present

- The number of layers l for every node is chosen randomly with exponentially
decaying probability distribution

16

8

0

l

0 1x

mL = 0.25 mL = 0.5 mL = 0.75

Insertion: Step 1

“To achieve the optimum performance advantage of the controllable hierarchy, the
overlap between neighbors on different layers has to be small.”

mL value tradeoff:

● a smaller mL: more traversals on each layer
● a larger mL: more overlaps

Choose mL = 1/ln(M)

17

Insertion: Step 1

18

Insertion

Step 2: greedy search

1. Greedily search for the nearest node from the upper layer (efConstruction=1)
2. Use it as an entry point to the next layer until reaching layer l

19

The node to insert
Entry point

Nearest neighbor

Insertion: Step 2

20

Insertion

Step 3: connect to the current graph

1. Insert the node starting from the
layer l

2. Greedily search for
efConstruction nearest
neighbors

3. Select M nodes from the
efConstruction node set and
build edges

21

The node to insert

The edge connection is constrained by Mmax in each layer

Insertion

Step 3: connect to the current graph

4. Each of found efConstruction
nodes acts as an entry point

5. Terminate after building edges in
layer 0

22

The node to insert

The edge connection is constrained by Mmax in each layer

Insertion: Step 3

23

24

Search Layer

Obtain the approximate ef nearest
neighbors in layer lc

- Used in NSW
- Allow discarding candidates for

evaluation

25

Candidate Selection Simple

Q: Which M nodes to take out of
efConstruction candidates?

A: Naive way – take M closest
candidates

Here X will be connected to B and C if
M = 2.

However, ideally it can be better for
navigation if the region A and B can be
connected. 26

Candidate Selection Heuristic

The heuristic considers both:

- The closest distances between nodes
- The connectivity of different regions on

the graph

27

Complexity Analysis

Search takes O(logn) time in total

Insertion of a single vertex: O(logn)

HNSW construction requires O(n * logn) time in total

28

Implementation

29
https://github.com/nmslib/hnswlib/blob/3f3429661187e4c24a490a0f148fc6bc89042b3d/examples/python/example_search.py

Evaluation - Implementation

● HNSW implementation uses custom distance functions together with C-style
memory management.

● Utilized nmslib implementation of sw-graph for NSW.

● Compare with the most up-to-date SOTA.

● Compare with the SOTA in Euclid Spaces with open-source implementation.

30

Evaluation - Method

● Comparison with Baseline NSW

● Comparison in Euclid Spaces

● Comparison in General Space

● Comparison with product quantization based algorithms.

31

Evaluation - HNSW vs. Baseline NSW

32

Evaluation - Euclid Spaces - Algorithms to Compare

● Baseline NSW Algorithm
● FLANN
● Annoy
● VP-tree
● FALCONN

33

Evaluation - Euclid Spaces - Datasets

34

Evaluation - Euclid Spaces

35

Evaluation - General Spaces - Purpose & Algorithms

● Baseline NSW algorithm has several problems on low dimensional datasets
as suggested in the paper "Permutation search methods are efficient, yet
faster search is possible."

● VP-tree
● Permutation Techniques (NAPP & Brute Force Filtering)
● Baseline NSW Algorithm
● NNDescent-produced proximity graphs

36

Evaluation - General Spaces - Datasets

37

Evaluation - General Spaces

38

Evaluation - HNSW vs product quantization based algorithms

● PQ-Algorithm: SOTA on billion scale datasets.
● Compare HNSW with SOTA PQ Algorithm in the library: Faiss.

39

Conclusion

● HNSW provides a groundbreaking approach to nearest neighbor search,
balancing speed and accuracy effectively even in challenging,
high-dimensional spaces.

● The HNSW graph demonstrates robustness to various dataset that was not
solvable by baseline NSW. It maintains good performance across different
types of datasets without significant tradeoffs.

● This method sets a new benchmark for nearest neighbor searches, offering
significant implications for machine learning and data retrieval.

40

Limitations

● Constructing and maintaining the HNSW graph can consume significant
memory, especially for large datasets. This can limit the scalability of the
method on memory-constrained systems or for applications with extremely
large datasets.

● The search in the HNSW structure always starts from the top layer, thus the
structure cannot be easily made distributed like baseline NSW.

41

Future Work

● The number of added connections per layer M can be a meaningful
parameter to tune that strongly affects the construction of the index, thus
might improve efficiency and effectiveness of HNSW.

● It would also be interesting to compare HNSW on the full 1B SIFT and 1B
DEEP datasets and with functionalities such as element updates and
removal.

● Design a distributed pipeline for speedup and memory optimization.

42

Thanks!

43

