Carnegie Mellon University

Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World (HNSW) graphs

Hu, Tong; Liu, Jiarui; Ma, Christina

4/22/24

Motivation

- Similarity Search: applications in ML, retrieval, and with genAI -> RAG.
- KNN -> ANN: computational complexity vs. search accuracy.

Motivation for Navigable Small Worlds (NSW)

Six degrees of separation experiments run by Milgram in the 1960s.

High clustering coefficient **High** clustering coefficient Low clustering coefficient High distance **Low** distance Low distance

ANN algorithm: Navigable Small Worlds (NSW)

● **Polylogarithmic** search and insertion, better for high dimensional large dataset

ANN algorithm: Navigable Small Worlds (NSW)

Greedy search can be trapped in local optimum (early stopping)

NSW Graph Construction

- Insert random points and link edges to M nearest neighbors (search)
- Longer edges are likely created at the beginning phase of graph construction
- *"later become bridges between the network hubs that keep the overall graph connectivity and allow the logarithmic scaling of the number of hops during greedy routing."*

Data structure inspiration: Skip Lists

- **O(log n)** time complexity on average for both insertion and search
- Layered format with **longer** edges in the highest layers (for fast search) and **shorter** edges in the lower layers (for accurate search).

HNSW: *Hierarchical* **Navigable Small Worlds**

HNSW: NSW + Skip List

From NSW:

- Zoom-out, then zoom-in (polylogarithmic) => zoom-in first in a graph (logarithmic)

From skip list:

- Separate the edges according to their length scale into different layers

HNSW Algorithm

- 1. Search
- 2. Insertion
- 3. Candidate selection heuristic

Inputs:

- 1. A query
- 2. A constructed HNSW graph

Outputs:

- K nearest neighbors to the query

1. Starts from the highest layer, by randomly choosing a starting enter point

Algorithm 5 K-NN-SEARCH(hnsw, q, K, ef) Input: multilayer graph h nsw, query element q , number of nearest neighbors to return K , size of the dynamic candidate list ef **Output:** K nearest elements to q $1 \ W \leftarrow \emptyset$ // set for the current nearest elements 2 ep \leftarrow get enter point for hnsw $3 L \leftarrow$ level of ep // top layer for hnsw 4 for $l_i \leftarrow l_{i+1}$ $W \leftarrow$ SEARCH-LAYER(q, ep, ef=1, lc) 5 $ep \leftarrow$ get nearest element from W to q 6 7 W \leftarrow SEARCH-LAYER(q, ep, ef, lc =0) 8 return K nearest elements from W to q

Layer 3 (sparse)

2. Return K nearest neighbors found on the lowest layer

Algorithm 5 K-NN-SEARCH(hnsw, q, K, ef) Input: multilayer graph h nsw, query element q , number of nearest neighbors to return K, size of the dynamic candidate list ef **Output:** K nearest elements to q 1 $W \leftarrow \emptyset$ // set for the current nearest elements 2 $ep \leftarrow$ get enter point for *hnsw* 3 L \leftarrow level of ep // top layer for hnsw 4 for $l_c \leftarrow L \dots 1$ $W \leftarrow$ SEARCH-LAYER(q, ep, ef=1, lc) 5 $ep \leftarrow$ get nearest element from W to q 6 7 W \leftarrow SEARCH-LAYER(q, ep, ef, lc =0) 8 return K nearest elements from W to q

Insertion

Insert nodes to the HNSW graph one-by-one

Inputs:

- HNSW
- Q, a new node
- efConstruction, size of the dynamic candidate list
- L, the number of layers
- mL, the normalization factor
- M, number of established edges
- Mmax: maximum number of edges for each element per layer

Insertion

Step 1: assign an integer l, the maximum layer where the node can present

- The number of layers l for every node is chosen randomly with exponentially decaying probability distribution

- \bullet / = 1: the node can only be found at layer 0 and layer 1
- \bullet *mL = 0*; the vectors are inserted at layer 0 only

$$
I = float[-ln(uniform(0, 1)) \cdot m_L]
$$

\n8
\n $mL = 0.25$
\n0
\n $mL = 0.5$
\n $mL = 0.75$

Insertion: Step 1

"To achieve the optimum performance advantage of the controllable hierarchy, the overlap between neighbors on different layers has to be small."

ml value tradeoff:

- a smaller mL: more traversals on each layer
- a larger mL: more overlaps

Choose $mL = 1/ln(M)$

Insertion: Step 1

18

Insertion

Step 2: greedy search

- 1. Greedily search for the nearest node from the upper layer (efConstruction=1)
- 2. Use it as an entry point to the next layer until reaching layer l

Insertion: Step 2

20

Insertion

Step 3: connect to the current graph

- 1. Insert the node starting from the layer l
- 2. Greedily search for efConstruction nearest neighbors
- 3. Select M nodes from the efConstruction node set and build edges

The edge connection is constrained by Mmax in each layer

Insertion

Step 3: connect to the current graph

4. Each of found efConstruction nodes acts as an entry point

5. Terminate after building edges in layer 0

The edge connection is constrained by Mmax in each layer

Insertion: Step 3

23

Algorithm 1

INSERT(h nsw, q, M, Mmax, efConstruction, mL)

Input: multilayer graph $hnsw$, new element q , number of established connections M , maximum number of connections for each element per layer Mmax, size of the dynamic candidate list efConstruction, normalization factor for level generation mL

- **Output:** update h *nsw* inserting element q
- 1 $W \leftarrow \emptyset$ // list for the currently found nearest elements
- 2 $ep \leftarrow$ get enter point for hnsw
- 3 L \leftarrow level of ep // top layer for hnsw
- 4 $l \leftarrow$ $\lceil -\ln(\text{unif}(0..1)) \cdot m_l \rceil$ // new element's level
- 5 for $l_c \leftarrow L \dots l+1$
- $W \leftarrow$ SEARCH-LAYER(q, ep, ef=1, lc)
- $ep \leftarrow$ get the nearest element from W to q
- for $l_c \leftarrow min(L, l) \dots 0$
- $W \leftarrow$ SEARCH-LAYER(q, ep, efConstruction, lc)
- neighbors \leftarrow SELECT-NEIGHBORS(q, W, M, lc) // alg. 3 or alg. 4
- add bidirectionall connectionts from neighbors to q at layer l_c
- for each $e \in$ neighbors // shrink connections if needed
- $eConn \leftarrow neighbourhood(e)$ at layer *l*c
- **if** $|eConn| > M_{max}//$ shrink connections of e

// if $l_c = 0$ then $M_{max} = M_{max0}$

- $eNewConn \leftarrow SELECT-NEIGHBORS(e, eConn, M_{max}, l_c)$ $\frac{1}{2}$ alg. 3 or alg. 4
- set neighbourhood(e) at layer le to eNewConn
- $ep \leftarrow W$
- 18 if $l > L$
- 19 set enter point for hnsw to q

Search Layer

Obtain the approximate ef nearest neighbors in layer lc

- Used in NSW
- Allow discarding candidates for evaluation

Candidate Selection Simple

Q: Which M nodes to take out of efConstruction candidates?

A: Naive way – take M closest candidates

Here X will be connected to B and C if $M = 2.$

However, ideally it can be better for navigation if the region A and B can be Algorithm 3 SELECT-NEIGHBORS-SIMPLE(q, C, M) Input: base element q , candidate elements C , number of neighbors to $return M$ **Output:** M nearest elements to q return M nearest elements from C to q

Candidate Selection Heuristic

The heuristic considers both:

- The closest distances between nodes
- The connectivity of different regions on the graph

Complexity Analysis

Search takes *O(logn)* time in total

Insertion of a single vertex: *O(logn)*

HNSW construction requires *O(n * logn)* time in total

Implementation

Initializing index - the maximum number of elements should be known beforehand p.init index(max elements=num elements, ef construction=200, M=16)

```
# Element insertion (can be called several times):
p.add items(data, ids)
```

```
# Controlling the recall by setting ef:
p.set ef(50) # ef should always be > k
```

```
# Query dataset, k - number of the closest elements (returns 2 numpy arrays)
labels, distances = p.knn query(data, k=1)
```
Evaluation - Implementation

● HNSW implementation uses custom distance functions together with C-style memory management.

● Utilized nmslib implementation of sw-graph for NSW.

• Compare with the most up-to-date SOTA.

• Compare with the SOTA in Euclid Spaces with open-source implementation.

Evaluation - Method

• Comparison with Baseline NSW

• Comparison in Euclid Spaces

• Comparison in General Space

• Comparison with product quantization based algorithms.

Evaluation - HNSW vs. Baseline NSW

Fig. 12. Comparison between NSW and Hierarchical NSW: (a) distance calculation number vs accuracy tradeoff for a 10 million 4dimensional random vectors dataset; (b-c) performance scaling in terms of number of distance calculations (b) and raw query(c) time on a 8-dimensional random vectors dataset.

Evaluation - Euclid Spaces - Algorithms to Compare

- Baseline NSW Algorithm
- FLANN
- Annoy
- VP-tree
- FALCONN

Evaluation - Euclid Spaces - Datasets

TABLE 1

Parameters of the used datasets on vector spaces benchmark

Evaluation - Euclid Spaces

Fig. 13. Results of the comparison of Hierarchical NSW with open source implementations of K-ANNS algorithms on five datasets for 10-NN searches. The time of a brute-force search is denoted as the BF.

Evaluation - General Spaces - Purpose & Algorithms

- Baseline NSW algorithm has several problems on low dimensional datasets as suggested in the paper "Permutation search methods are efficient, yet faster search is possible."
- VP-tree
- Permutation Techniques (NAPP & Brute Force Filtering)
- Baseline NSW Algorithm
- NNDescent-produced proximity graphs

Evaluation - General Spaces - Datasets

TABLE 2.

Used datasets for repetition of the Non-Metric data tests subset.

Evaluation - General Spaces

Fig. 14. Results of the comparison of Hierarchical NSW with general space K-ANNS algorithms from the Non Metric Space Library on five datasets for 10-NN searches. The time of a brute-force search is denoted as the BF.

Evaluation - HNSW vs product quantization based algorithms

- PQ-Algorithm: SOTA on billion scale datasets.
- Compare HNSW with SOTA PQ Algorithm in the library: Faiss.

Fig. 15 Results of comparison with Faiss library on the 200M SIFT dataset from [13]. The inset shows the scaling of the query time vs the dataset size for Hierarchical NSW.

TABLE 3 Parameters for comparison between Hierarchical NSW and Faiss on a 200M subset of 1B SIFT dataset.

Algorithm	Build time	Peak memory (runtime)	Parameters
Hierarchical NSW	5.6 hours	64 Gb	M=16, efConstruction=500 (1)
Hierarchical NSW	42 minutes	64 Gb	M=16, efConstruction=40 (2)
Faiss	12 hours	30 Gb	OPQ64, IMI2x14, PQ64 (1)
Faiss	11 hours	23.5 Gb	OPQ32, IMI2x14, PQ32 (2)

Conclusion

● HNSW provides a groundbreaking approach to nearest neighbor search, balancing speed and accuracy effectively even in challenging, high-dimensional spaces.

• The HNSW graph demonstrates robustness to various dataset that was not solvable by baseline NSW. It maintains good performance across different types of datasets without significant tradeoffs.

• This method sets a new benchmark for nearest neighbor searches, offering significant implications for machine learning and data retrieval.

Limitations

• Constructing and maintaining the HNSW graph can consume significant memory, especially for large datasets. This can limit the scalability of the method on memory-constrained systems or for applications with extremely large datasets.

• The search in the HNSW structure always starts from the top layer, thus the structure cannot be easily made distributed like baseline NSW.

Future Work

• The number of added connections per layer M can be a meaningful parameter to tune that strongly affects the construction of the index, thus might improve efficiency and effectiveness of HNSW.

● It would also be interesting to compare HNSW on the full 1B SIFT and 1B DEEP datasets and with functionalities such as element updates and removal.

• Design a distributed pipeline for speedup and memory optimization.

Thanks!