
FlashAttention
Zhitong Guo, Xinran Wan, Haoze He, Alicia Sui

Overview
1. Motivation

2. Challenges and Related Work

3. FlashAttention
a. Tiling

b. Recomputation

c. Block-sparse FlashAttention

4. Evaluation

5. Future Directions

Motivation: Modeling Longer Sequences

● Large context needed to understand books, plays, etc. (NLP)

● Higher resolution necessary to better, more robust insight. (CV)

● Other data format: time series, audio, video, etc. modeled with sequences of millions of

steps.

Challenge: Transformers struggle with long sequences…

… due to quadratic time & memory complexity in sequence length.

Related Works
Question: Better attention ⇒ Better Transformer models?

Solution: Approximate attention methods

- Reduce complexity to linear or near-linear wrt. sequence length

- Retain model performance as much as possible

Sparse
Approximation

Low-rank
Approximation

Combination of
The Two

Related Works: Sparse Approximation
Reformer: The Efficient Transformer[1]

1. Locality Sensitive Hashing (LSH): reduce the complexity of attending over long

sequences

2. Reversible Residual Layers: use available memory more efficiently

[1] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The International Conference on Machine Learning (ICML), 2020.

Related Works: Sparse Approximation
Steps:

1. A hash function: match similar vectors

together, instead of searching through all

possible pairs of vectors.

2. rearrange sequence and divide it into

segments for parallel processing

3. Apply attention within those much shorter

chunks and their adjoining neighbors to cover

the overflow

Related Works: Sparse Approximation
Reformer: The Efficient Transformer[1]

1. Locality Sensitive Hashing (LSH): reduce the complexity of attending over long

sequences

2. Reversible Residual Layers: use available memory more efficiently

[1] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The International Conference on Machine Learning (ICML), 2020.

Related Works: Sparse Approximation
Goal: recompute the input of each layer on-demand
during back-propagation, rather than storing it in
memory.

Reversible layers:

● Activations from the last layer are used to
recover activations from any intermediate
layer

○ In a typical residual network, each layer in the stack
keeps adding to vectors that pass through the
network.

● Reversible layers, instead, have two sets of
activations for each layer.

○ One follows the standard procedure and is
progressively updated from one layer to the next

○ The other captures only the changes to the first.
Thus, to run the network in reverse, one simply
subtracts the activations applied at each layer.

Related Works: Low-rank Approximation
Rethinking Attention with Performers [1]

- Framework implementation algorithm: Fast Attention via Matrix Associativity (FAVOR+)
- Any attention matrix can be effectively approximated in downstream

Transformer-applications using random features.

[1] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. In International Conference on Learning Representations (ICLR), 2020.

Related Works ← Problems
Didn’t display wall-clock speedup. And they want to trade performance for speedup.

Why?
They only focused on FLOP reduction, and ignored IO (ie. memory access)

overheads.

Let’s first look at the evolving process before FlashAttention…

Evolving Process
● For each attention head, we need to store the attention matrix:
●
● Let’s just consider one row:

●

● Key idea of Flash-Attention:
● We store for every r and j, this takes memory .
● We do not store the full softmax matrix, we will “compute them on the fly” to save

memory.
● Reduce memory usage from n to d/m

Evolving Process

Evolving Process

Evolving Process: From Stupid Attention (v2) to Flash Attention

Evolving Process: From Stupid Attention (v3) to Flash Attention

Evolving Process: Flash Attention

Authors’ Hypothesis
IO-aware attention algorithm can bridge the gap.

● Carefully account for reads/writes to various levels of fast/slow memory.

● Common python DL interfaces (Pytorch, Tensorflow, etc.) don’t allow fine-grained

memory access control.

Goal: Avoid reading and writing the attention matrix to and from HBM.

● Compute the softmax reduction without access to the whole input

● Not store the large intermediate attention matrix for the backward pass.

FlashAttention: a new attention algorithm, computes exact attention, access memory far less.

Both performance and computation increase in comparison to related works.

FlashAttention: Reduce HBM R/W via Computing by Blocks
Goal 1: Compute softmax without access to full input

Goal 2: Compute backward without the large attention matrix from forward

Solution 1: Tiling. Restructure the algorithm to load block by block from HBM to
SRAM to compute attention.

Solution 2: Recomputation. Without storing the attention matrix in forward,
recompute in backward.

HBM vs SRAM: Memory Hierarchy

Recall: Attention O = Softmax(QKT) V

Tiling: dynamically compute softmax

*alpha and beta are scaling factor of the denominator of softmax

Tiling
Decompose Large Softmax into smaller ones by Scaling

1. Load inputs by blocks from global to shared

memory (HBM to SRAM)

2. On chip, compute attention output wrt the block

3. Update output in device memory (HBM) by scaling

Tiling

1. Load inputs by blocks from global

to shared memory (HBM to SRAM)

2. On chip, compute attention output

wrt the block

3. Update output in device memory

(HBM) by scaling

Cr: Francisco Massa

https://docs.google.com/file/d/1BJUQadZ8IkiL2luXifjTlk7gCGRzxVkp/preview

Recomputation in backward pass
By storing softmax normalization factors from
forward (size N),
quickly recompute attention in the backward
from inputs in shared memory (SRAM)

💡Speed up backward pass with increased
FLOPs💡

Threadblock-level Parallelism
Partition of FlashAttention across thread blocks:

Eg. A100 with 108 SMMs

• Step 1: assign different heads to different

thread blocks (16-64 heads)

• Step 2: assign different queries to different

thread blocks

Block-Sparse FlashAttention
● The algorithm is almost identical to Algorithm 1 except we skip zero blocks

● Given a predefined block sparsity mask , we can adapt

Algorithm 1 to only compute the nonzero blocks of the attention matrix.

Further Improvements for Block-Sparse FlashAttention
● 2-4x faster than FlashAttention

● Scale up to sequence length of 64K

● Better IO complexity than FlashAttention by a factor proportional to sparsity

ratio

Pros
Speedup: faster end-to-end training of transformers

Memory savings: Memory linear in sequence length, longer sequences,

higher-quality transformers

Evaluation and Experiment
End to End training results (Speedup):

MLPerf: (high optimized) standard benchmark for training speed.

FlashAttention: outperforms the previous MLPerf record by 15%(and 3.2x) faster than Huggingface BERT

Evaluation and Experiment
End to End training results (Speedup and Performance):

FlashAttention on GPT-3: GPT-2 small and medium using FlashAttention achieve up to 3× speed up compared to
Huggingface implementation and up to 1.7× compared to Megatron-LM. Training time reported on 8×A100s
GPUs. (Faster Training, Longer Context)

Evaluation and Experiment
End to End training results (Speedup and Performance):

Long-Range Arena Benchmark: Compare vanilla Transformer (with either standard implementation or

FlashAttention. Each task has a different sequence length varying between 1024 and 4096.

Evaluation and Experiment
End to End training results (Speedup and Performance):

Long Context: The runtime and memory-efficiency of FlashAttention increase the context length of GPT-2 by 4×

while still running faster than the optimized implementation from Megatron-LM. (GPT-2 with FlashAttention and

context length 4K is still 30% faster than GPT-2 from Megatron with context length 1K, while achieving 0.7 better

perplexity.)

Evaluation and Experiment
End to End training results (Performance):

Why long text?: Long Document performance (micro F1) at different sequence lengths using FlashAttention.

Path-X, Path-256: Transformer model that can achieve non-random performance on Path-X and Path-256.
Other models can only do random guess. Path-X tell whether two dots are connected, using pixels as inputs.
Require sequence length 16K/ 64K for Path-X/ Path-256.

Future Direction

1. Multi-GPU IO-Aware Methods: While the current IO-aware attention implementation is optimal

for single GPU usage, attention computation can be parallelized across multiple GPUs. However,

this introduces complexities in IO analysis, particularly in accounting for data transfer between

GPUs. There's a potential for future research to explore IO-aware methodologies in multi-GPU.

2. Extension of IO-Aware Approach: Beyond attention, the IO-aware methodology can be applied to

other modules in deep learning. While attention is the most memory-intensive computation in

Transformers, every layer interacts with GPU HBM.

