FlashAttention

Zhitong Guo, Xinran Wan, Haoze He, Alicia Sui

Overview

N

Motivation
Challenges and Related Work

FlashAttention
a. Tiling
b. Recomputation
c. Block-sparse FlashAttention

Evaluation
Future Directions

Motivation: Modeling Longer Sequences

e Large context needed to understand books, plays, etc. (NLP)
Higher resolution necessary to better, more robust insight. (CV)
e Other dataformat: time series, audio, video, etc. modeled with sequences of millions of

steps.

Challenge: Transformers struggle with long sequences...

... due to quadratic time & memory complexity in sequence length.

Related Works

Question: Better attention = Better Transformer models?
Solution: Approximate attention methods

- Reduce complexity to linear or near-linear wrt. sequence length
- Retain model performance as much as possible

Sparse Low-rank Combination of
Approximation Approximation The Two

Related Works: Sparse Approximation

Reformer: The Efficient Transformer!"]

1. Locality Sensitive Hashing (LSH): reduce the complexity of attending over long
sequences

[1] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The International Conference on Machine Learning (ICML), 2020.

Related Works: Sparse Approximation

fueiies (T T IIIro] Stees

of queries=keys

LSH bucketing .D.DD.[I..DD..DID 1. A hash function: match similar vectors

/2\

Sort by LSH bucket SIS = \«/\‘ Z N\ together, instead of searching through all

/ ey /&//\ P r”\(\/ \“
Chunk sorted

.-.-.D[IDD...DDDD possible pairs of vectors.
sequence to

Bamallglize 2. rearrange sequence and divide it into

I T T L segments for parallel processing

Attend within
same bucket in

Eunrchurfeand a ' . 3. Apply attention within those much shorter
previous chunk ’.DDD D... DDDD

chunks and their adjoining neighbors to cover
the overflow

Related Works: Sparse Approximation

Reformer: The Efficient Transformer!"]

1. Locality Sensitive Hashing (LSH): reduce the complexity of attending over long
sequences

[1] Nikita Kitaev, tukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In The International Conference on Machine Learning (ICML), 2020.

Related Works: Sparse Approximation

{a)

{b)

(c)

Ry =y
x ® y ®
x1 y1 @
Lq FJ
X2 —@—— y2
x1 J y1 @
&) Lj
2 —0O y2

z1

z2

z1

z2

Goal: recompute the input of each layer on-demand
during back-propagation, rather than storingitin
memory.

Reversible layers:

e Activations from the last layer are used to
recover activations from any intermediate
layer

o Inatypical residual network, each layer in the stack
keeps adding to vectors that pass through the
network.

e Reversible layers, instead, have two sets of

activations for each layer.
o Onefollows the standard procedure and is
progressively updated from one layer to the next
o Theother captures only the changes to the first.
Thus, to run the network in reverse, one simply
subtracts the activations applied at each layer.

Related Works: Low-rank Approximation

Rethinking Attention with Performers ']

- Framework implementation algorithm: Fast Attention via Matrix Associativity (FAVOR+)
- Any attention matrix can be effectively approximated in downstream
Transformer-applications using random features.

S i 3 o § s Y
L7 R — = R/ m——y w— Y w— —
b =3 5 Ei
= SR N EE ATVE) 83L><d;:iL><m€35 e | <5 17 g
a /el (KT i / . - K)
A Ql ‘\\\ A‘ attention mechanism V ,’I' |\\\\Ql ‘\ S i i e Y_ :/’III

[1] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers. In International Conference on Learning Representations (ICLR), 2020.

Related Works — Problems

Didn’t display wall-clock speedup. And they want to trade performance for speedup.

Why?

They only focused on FLOP reduction, and ignored IO (ie. memory access)
overheads.

Let’s first look at the evolving process before FlashAttention...

Evolving Process

e For each attention head, we need to store the attention matrix:

) [softmax(viTQ,Krij + p,.’,j)]
J€EIn]

s o i€[n]
e Let's just consider one row:

° softmax(v,.TQ,K,TUj+pifj)
J€E[n]

e Key idea of Flash-Attention:
e We store foreveryrand |, this takes memory .

e We do not store the full softmax matrix, we will “compute them on the fly” to save
memory.

e Reduce memory usage from n to d/m

Evolving Process

Main Memory Usage:
* For each attention head, we need to store the n x n attention matrix:

. [softmax(viTQ,Krij + p,fj)]
JEIn]

- Let’s just consider one row:
. softmax(v,.TQrK;rvj +p,.'j>
"/ jeln]

- Key idea of Flash-Attention:
- We store Kv;, Q/v, for every r and j, this takes memory d x n.

« We do not store the full softmax matrix, we will “compute them on the fly” to save memory.
* Reduce memory usage from n to d/m

i€[n]

Evolving Process

. Consider O = Z y; X softmax(x),

i€[n]
* Where for each x;, y;,, we need computation time d/m to retrieve it.

Stupid-Attention computation:
« Foriinrange(n):
« Compute norm_ factor = norm_ factor + exp(x;).
if x; is really large-> overflow! Due to floating point accuracy,
« Compute O = O + y, exp(x;)
 Return O/norm_ factor

This only requires memory O(M), where M = — is the dimension of y,
m

But this have floating point accuracy issue

Evolving Process: From Stupid Attention (v2) to Flash Attention

Why is Stupid Attention Stupid?
Floating Point accuracy. We can not compute z exp(x;) accurately! No such accuracy.

Stupid Attention V2:
« Go through i, compute the max of x; as m(x)
* Foriinrange(n):
Compute norm_ factor = norm_ factor + exp(x; — m(x)).
Compute O = O + y, exp(x; — m(x))
* Solve floating point issue-> one term in summation that is one
« Return O/norm_ factor

- This extract x; twice, one from max, one from else->computation cost
But then we need to compute X; twice, unless we store it in the memory...
But we don’t want to put x; in memory
But we solve the floating point issue

Evolving Process: From Stupid Attention (v3) to Flash Attention

 Stupid Attention V3 is an upgrade of stupid attention v2, where we only compute
x; once and maintain the correct floating-point accuracy. Maintain running max
instead of actual max

« Each time subtract running max, not actual max
» Foriin range(n):
« Compute m,,,(x) = max(m(x), x;)
« Compute norm = exp(m(x) — mnew(x))norm + exp(x,- = mnew(x)) :
* ComPUte O = exp(m(x) - mnew(x))o + Yi exp(xi - mnew(x))
* Update m(x) = m,,,(x)

* Output O/norm.

« Same computation cost as naive version

* Memory usage-> d/m

« But still use for loop! Not utilizing fast matrix multiplication

Evolving Process: Flash Attention

Flash attention is a little bit more involved than the previous slides.
It divides the computation in chunks of R
Extract x(m) in blocks instead in for loops! Speed really fast!!
For i in range(n//R): -> for loop go through blocks
« Compute self attention in naive way in each block

Compute the softmax for x[iR:iR +R] using the fastest way, which uses memory R. Then compute
0, = Z y; X softmax(x[iR : iR +R])j

i€[iR,iR+R)
 (only store this O, in SRAM).

Store the max of x[j] for j in [iR, iR + R) in memory as m[l].

Store the normalization factor of the softmax (after subtracting the max) of x[i R:iR + R] in memory as norm[i].

Update m,,,,(x) = max(m(x), m[i])
Update O = Oexp(m(x) - mnew(x)) + exp(m[i] - mnew(x))Oi X norm[i]

Update norm = exp(m(x) — m,,,(x))norm + norm[i] X exp(m[i] — m,,(x)).

Update m(x) = m,,,(x)

Authors’ Hypothesis

|O-aware attention algorithm can bridge the gap.

e Carefully account for reads/writes to various levels of fast/slow memory.
Common python DL interfaces (Pytorch, Tensorflow, etc.) don’t allow fine-grained
memory access control.

e Compute the softmax reduction without access to the whole input
Not store the large intermediate attention matrix for the backward pass.

FlashAttention: a new attention algorithm, computes exact attention, access memory far less.

Both performance and computation increase in comparison to related works.

FlashAttention: Reduce HBM R/W via Computing by Blocks

Goal 1: Compute softmax without access to full input
Goal 2: Compute backward without the large attention matrix from forward

Solution 1: Tiling. Restructure the algorithm to load block by block from HBM to
SRAM to compute attention.

Solution 2: Recomputation. Without storing the attention matrix in forward,
recompute in backward.

HBM vs SRAM: Memory Hierarchy

SRAM: 19TB/s (20 MB)

HBM: 1.5TB/s (40 GB)

WETHE TG IS DRAM: 12.8 GB/s
(CPU DRAM) (>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

Recall: Attention O = Dropout (Softmax(Mask(QKT)))V

Q:Nxd K:Nxd A=QKT:NxN A = mask(A) A =softmax(A):NxN V:Nxd O=AV:Nxd
= B N I [g L |
= = i e Em H I
= = e I==. = =
= X [' I o X (i I i
= = OOEEEe HIEEAEEE = 0
i W 0 O |] o o) 0 o) B
= [l N A 1 1 I o v o = B

m(x) := max X f@) = [em® | gFam] | f(x)= Zf(x), softmax(x) := %

Tiling: dynamically compute softmax

m(x) = m([x(l) x(z)]) =max(m(x),mx?)), f(x)= [em(x(l))—m(x)f(x(l)) em(x(z))—m()c)f(x@))]

£(x) = ([x® x@]) = N mE (V) 4 N mE (D) softmax(x) = ‘f((x))'.
’ £(x
Attention on GPT-2
softmax([A1, Az]) = [x softmax(A;), S x softmax(As)] 154 JMatmuI
Vi
softmax([A;, A2]) [VI] = a x softmax(A;)Vi + B x softmax(As)V, - | Dropout
2 £10+ -
v Softmax
*alpha and beta are scaling factor of the denominator of softmax £ o
= 5. i Fused
Mask Kernel
H — |
0] Matmul

PyTorch FlashAttention

Tiling
Decompose Large Softmax into smaller ones by Scaling

1. Load inputs by blocks from global to shared
memory (HBM to SRAM)

2. Onchip, compute attention output wrt the block

3. Update output in device memory (HBM) by scaling

softmax([A4;, As]) = [X softmax(A4;), B x softmax(A;)]
)

softmax([A;, As] [“f] = a X softmax(A4;)V; + B x softmax(A;)V,
2

Outer Loop

K:dxN

Q:Nxd
=r
«{
=
o EI
(=} °|
= +>
2 Copy !
£
v

sm(QK")V: Nx d

Copy Block to SRAM
Outer Loop

Compute Block
on SRAM

Inner Loop

FlashAttention

V:NXd

N

[®)
T
<

doo iauuj

dooT 193nQ

Tiling

1. Load inputs by blocks from global
to shared memory (HBM to SRAM)

2. On chip, compute attention output
wrt the block

3. Update output in device memory
(HBM) by scaling

Cr: Francisco Massa

Keys (NxK)

Q @ tr(K)
NxN

Queries (NxK)

Output
(NxK)

Values
(NxK)

https://docs.google.com/file/d/1BJUQadZ8IkiL2luXifjTlk7gCGRzxVkp/preview

Recomputation in backward pass

By storing softmax normalization factors from
forward (size N),

quickly recompute attention in the backward
from inputs in shared memory (SRAM)

Attention | Standard FlashAttention
GFLOPs 66.6 75.2
HBM R/W (GB) 40.3 4.4
Runtime (ms) 41.7 7.3

¢ Speed up backward pass with increased
FLOPs

Outer Loop

K:dxN

Copy Block to SRAM

Q:Nxd - Outer Loop 3
Zr T T T T "
; I |
.o i rl ————————————
V) N] T
o o 180
a | vy |
o Compute Block
e + I
. on SRAM
& Copy | !
= |
I
|
Output to HBM
sm(QK")V: Nx d

Inner Loop

FlashAttention

V:NXd

N

[®)
T
<

doo iauuj

dooT 193nQ

Threadblock-level Parallelism

Partition of FlashAttention across thread blocks: Keys/Values

Eg. A100 with 108 SMMs R
Queries

e Step 1: assign different heads to different Block 3

thread blocks (16-64 heads) Block 4

e Step 2: assign different queries to different
thread blocks Forward pass

Algorithm 1 FLASHATTENTION

Require: Matrices Q.K,V € R¥*4 in HBM, on-chip SRAM of size M.
1: Set block sizes B. = [-| B, = min ([] d).
2: Initialize O = (0)nyxq € RNX", £=(0)y € RN, m=(—0)y € RN in HBM.
3: Divide Q into 7, = L%} blocks Qi,...,Qg. of size B, X d each, and divide K,V in to 7. = [é\/—j blocks
K, ..o By, and Vg, .. ., V., of size B % d each.
4: Divide O into 7, blocks Oy, ..., Oz, of size B, X d each, divide ¢ into 7, blocks ¢;,. .., (1. of size B, each,
divide m into 7, blocks my,...,my, of size B, each.

51 for]l = f< I.do

6: Load K;,V; from HBM to on-chip SRAM.

7. forl1<i<T, do

8: Load Q;,0;.(;,m; from HBM to on-chip SRAM.

9: On chip, compute S;; = Q,K/T e REBXE:

10: On chip,~compute m;j = rowmax(S;;) € RBx, Py = exp(Bij — mhij) € R B8, (pointwise), {;; =
rowsum(P;;) € RBr,

1k On chip, compute m" = max(m;,m;;) €1 REr, =gy M gy o [,/ € R5r,

12: Write O; « diag(£V)~ L(diag(£;)e™ ™" 0, + e’f'ff"”';lewPijVj) to HBM.

13: Write £; « £V, m; < m?*" to HBM.

14: end for

15: end for

16: Return O.

Block-Sparse FlashAttention

e Thealgorithm is almostidentical to Algorithm 1 except we skip zero blocks
e Given a predefined block sparsity mask M e {0, 1}V/B-xN/B- 'wwe can adapt
Algorithm 1 to only compute the nonzero blocks of the attention matrix.

Given inpruts Q,K,V € R¥*4 and a mask matrix M € {0, 17}N XN , we want to cdmputé:
S=QK" e RV*N P =softmax(So 1y) e RV*N, 0=PV eRV*,

where (S © Ty)ks = Sk if Mkl =1 and —oo if My; = 0. We require M to have block form: for some block sizes
B,,B., for all k,I, My ; =M;; with i = |k/B,],j = |l/B.] for some M € {0, 1}N/BrxN/Bc

Algorithm 5 Block-Sparse FLASHATTENTION Forward Pass

Require: Matrices Q, K,V € RV¥*4 in HBM, on-chip SRAM of size M, softmax scaling constant 7 € R,

masking function MASK, dropout probability pgrop, block sizes B. = [%1,3, = min([M] .d), block

1
sparsity mask M € {0, 1}V/B-xN/Bc

: Initialize the pseudo-random number generator state R and save to HBM.

2: Initialize O = (0)yxq € RV*4, £ = (0)y € RN, m = (—o0)y € RN in HBM.

ol o

=
- O

._.
»

13
14:

15:
16:
173
18:
19:
20:

K;,...,Kr. and V;,..., Vg, of size B. X d each.
Divide O into 7, blocks O, ..., Or, of size B, X d each, divide ¢ into 7, blocks ¢, ..., {1, of size B, each,
divide m into 7, blocks m1,...,mr,. of size B, each.
for 1< <T7.do
Load K, V; from HBM to on-chip SRAM.
for 1<i<T7, do
if M;; #0 then
Load Q;, O;, ¢;, m; from HBM to on-chip SRAM.
On chip, compute S;; = TQ,-KJT. € RBrxBe,
On chip, compute S?}as}wd = MASK(S;;).

Divide Q into 7, = [Bir.l blocks Qj,...,Qr,. of size B, X d each, and divide K,V in to T, = [Bic] blocks

On chip, compute m;j = rowmax(S?}aSked) € REr, f’,-j = eXp(S?j’.ELSkEd — m;j) € RBrxBe (pointwise),
Z’,-j = rowsum(f),-j) € RE&-,
On chip, compute m?*¥ = max(m;,m;;) € RBr, 2V = I L gty T f,j € RBr.
On chip, compute f’?jmpped = dropout(P; % Diivan)+
Write O; « diag(£2°V)~!(diag(£)e™ ™" O; + ™™™ P?jmppedv ;) to HBM.
Waite £y« £, mie—m®™ to HBM.
end if
end for

end for
Return O, ¢, m, R.

Further Improvements for Block-Sparse FlashAttention

e 2-4xfaster than FlashAttention
e Scaleuptosequence length of 64K

e Better IO complexity than FlashAttention by a factor proportional to sparsity
ratio

Pros

Speedup: faster end-to-end training of transformers

Memory savings: Memory linear in sequence length, longer sequences,
higher-quality transformers

200 1

Speed (TFLOPs/s)
3

50 4

Attention forward + backward speed (A100 80GB SXM4)

fuy

o

o
L

EEm Pytorch

W FlashAttention

mm xformers

Bl FlashAttention Triton

512

B FlashAttention-2

1k

2k 4k
Sequence length

8k

182

189

Memory Reduction (X times less)

FlashAttention Memory Reduction

20 A

1.5

10 A

128

256

512 1024 2048 4096
Sequence Length

BN Dropout + Masking

Evaluation and Experiment

End to End training results (Speedup):

BERT Implementation Training time (minutes)
Huggingface [91] 356+39
Nvidia MLPerf 1.1 [63] 200+ 1.5
FLASHATTENTION (ours) 174+ 14

MLPerf: (high optimized) standard benchmark for training speed.

FlashAttention: outperforms the previous MLPerf record by 15%(and 3.2x) faster than Huggingface BERT

Evaluation and Experiment

End to End training results (Speedup and Performance):

Model implementations

OpenWebText (ppl) Training time (speedup)

GPT-2 small - Huggingface [87]
GPT-2 small - Megatron-LM [77]
GPT-2 small - FLASHATTENTION

18.2
18.2
18.2

9.5 days (1.0x)
4.7 days (2.0x)
2.7 days (3.5%)

GPT-2 medium - Huggingface [87]
GPT-2 medium - Megatron-LM [77]
GPT-2 medium - FLASHATTENTION

14.2
14.3
14.3

21.0 days (1.0x)
11.5 days (1.8x)
6.9 days (3.0x)

N
o
o

Training speed TFLOPs/s per A100

150 1

100 A

v
(=]

0_
GPT3-125M GPT3-355M GPT3-760M GPT3-1.3B GPT3-2.7B

GPT3 training speed
189 189

mm Megatron-LM 2K
W FlashAttention 2K
mm Megatron-LM 8K
. FlashAttention 8K

FlashAttention on GPT-3: GPT-2 small and medium using FlashAttention achieve up to 3x speed up compared to
Huggingface implementation and up to 1.7x compared to Megatron-LM. Training time reported on 8xA100s
GPUs. (Faster Training, Longer Context)

Evaluation and Experiment

End to End training results (Speedup and Performance):

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 2.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4x

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8%

Linformer [84] 35.6 55.9 7.7 37.8 67.6 54.9 2.5x

Linear Attention [50] 38.8 63.2 80.7 42.6 72.5 59.6 2.3%

Performer [12] 36.8 63.6 82.2 42.1 69.9 58.9 1.8x

Local Attention [80] 36.1 60.2 76.7 40.6 66.6 56.0 1.7x

Reformer [51] 36.5 63.8 78.5 39.6 69.4 57.6 1.3%

Smyrf [19] 36.1 64.1 79.0 39.6 70.5 57.9 1.7

Long-Range Arena Benchmark: Compare vanilla Transformer (with either standard implementation or
FlashAttention. Each task has a different sequence length varying between 1024 and 4096.

Evaluation and Experiment

End to End training results (Speedup and Performance):

Model implementations

Context length OpenWebText (ppl) Training time (speedup)

GPT-2 small - Megatron-LM
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION
GPT-2 small - FLASHATTENTION

1k 18.2 4.7 days (1.0x)
1k 18.2 2.7 days (1.7x)
2k 17.6 3.0 days (1.6x)
4k 17.56 3.6 days (1.3x)

Long Context: The runtime and memory-efficiency of FlashAttention increase the context length of GPT-2 by 4x
while still running faster than the optimized implementation from Megatron-LM. (GPT-2 with FlashAttention and
context length 4K is still 30% faster than GPT-2 from Megatron with context length 1K, while achieving 0.7 better

perplexity.)

Evaluation and Experiment

End to End training results (Performance): Model Path-X Path-256

Transformer X
Linformer [84]

Linear Attention [50]

| 512 1024 2048 4096 8192 16384 Performer [12]

MIMIC-III [47] | 52.8 50.7 51.7 54.6 564 57.1 Local Attention [80]
ECtHR [6] | 72.2 743 77.1 786 80.7 79.2 Reformer [51]
SMYRF [19]

T X X XX XX

FLASHATTENTION 61.4
Block-sparse FLASHATTENTION 56.0 6

X
X
X
X
X
X
X
3.

1

Why long text?: Long Document performance (micro F1) at different sequence lengths using FlashAttention.

Path-X, Path-256: Transformer model that can achieve non-random performance on Path-X and Path-256.
Other models can only do random guess. Path-X tell whether two dots are connected, using pixels as inputs.
Require sequence length 16K/ 64K for Path-X/ Path-256.

Future Direction

1. Multi-GPU IO-Aware Methods: While the current |O-aware attention implementation is optimal
for single GPU usage, attention computation can be parallelized across multiple GPUs. However,
this introduces complexities in 10 analysis, particularly in accounting for data transfer between
GPUs. There's a potential for future research to explore |O-aware methodologies in multi-GPU.

2. Extension of |IO-Aware Approach: Beyond attention, the |O-aware methodology can be applied to
other modules in deep learning. While attention is the most memory-intensive computationin
Transformers, every layer interacts with GPU HBM.

