Carnegie Mellon University

Flamingo: a visual language model for few-shot learning

Haoyu Qi, Kelly Shi

Understanding Visual Language Models (VLMs)

Significance in Al

Visual Language Models are crucial for developing AI that can interpret and respond to complex multimodal contexts combining both visual and linguistic elements.

Integration of Sensory Data

These models are designed to process and integrate data from both visual inputs (like images and videos) and textual descriptions, mimicking human sensory and cognitive capabilities.

The Need for a Hybrid Solution

VLms aim to bridge the gaps between language and vision models to create a more versatile model.

Main Tasks Performed by VLMs

Overview of "Flamingo"

Key Features

- A family of visual language models(VLMs)
- Input: visual data interleaved with text
- Output: free-from text
- Training data: large-scale multi-modal web corpora
- In-context few-shot learning

Key Innovations

- Bridge powerful pretrained vision-only and language-only models
- Handle sequences of arbitrarily interleaved visual and textual data
- Seamlessly ingest images or videos as inputs.

Language Modelling and Few-Shot Adaptation

- Emergence of Transformers as a substantial advancement in language modeling.
- Standard approach involves pretraining on a large dataset followed by adaptation to specific tasks.
- Flamingo builds on the Chinchilla language model, utilizing in-context few-shot learning, avoiding more complex methods like metric learning and meta-learning.

Integration of Language and Vision Models

- The breakthroughs in language models have significantly influenced vision-language modeling.
- Inspiration from BERT has led to a large body of work integrating language with vision.
- Flamingo differs in that it does not require fine-tuning on new tasks, unlike many previous models.

Contrastive Learning in Vision-Language Models

- A significant thread in vision-language models involves contrastive learning, which is foundational for models like Flamingo.
- However, Flamingo extends beyond merely using contrastive methods by enabling generative text capabilities.

Pretrained Language Models and Their Adaptation

- Freezing the pretrained weights to prevent catastrophic forgetting has become a recent trend in model training.
- Flamingo innovates by freezing certain language model layers while adding learnable layers, allowing it to handle sequences of images, videos, and text seamlessly.

- Unifying Strong Single-Modal Models
- Supporting Both Images and Videos
- Heterogeneous Training Data

.

• Unifying Strong Single-Modal Models

- Training large language models is extremely computationally expensive.
- A text-only model has no built-in way to incorporate data from other modalities.
- Proposed approach
 - Interleave cross-attention layers.
 - A gating mechanism to minimize the effect of added layers, and to improve stability and final performance.

• Supporting Both Images and Videos

- Images and videos (of even modest resolution) are high dimensional.
- Flattening them to 1D sequences is costly as the computation scales quadratically with the sequence length.
- Proposed Approach
 - Use a Perceiver-based architecture that can produce a small fixed number of visual tokens (around a hundred) per image/video, given a large varying number of visual input features (up to several thousand).

• Heterogeneous Training Data

- Large models require huge datasets.
- Paired image/caption datasets used in CLIP and ALIGN may not be general enough to reach GPT-3 style few-shot learning.
- Proposed Approach
 - Scrape webpages with interleaved images and text. Despite the generality of the data, the images and text are often weakly related.
 - Combine the interleaved dataset with standard paired image/text and video/text datasets where the visual and language are typically more strongly related.

Motivation

- 1. traditional solution to learn a new task given a shot instruction in computer vision is to **finetune a pretrained model**.
 - resource intensive
 - requires large amount of annotated data
 - requires careful hyperparameter tuning
- 2. multimodal vision-language models trained with **a contrastive objective** enables zero-shot adaptation to new tasks
 - **limited use case** as they need finite sets of outcomes to compute similarity scores
 - **Cannot generate language** (not suitable for open-ended Q&A)
 - or **generate visually-conditioned language**, performing bad in low-data regime

Few shot prompting in LM

Few shot prompting in Flamingo

Few shot prompting in Flamingo

15

Visual Encoder & Perceiver Resampler

Visual Encoder

- Normalizer Free ResNet (NFNet) F6 model
- Pretrained using two-term contrastive loss of image and text pairs
 - train Visual Encoder and Language Encoder from scratch
 - encode image and text pairs separately to shared embedding space
 - matched pairs as positive, others as negative
 - minimize sum of text-to-image loss and image-to-text loss
- images' 2D spatial features/videos' 3D spatio-temporal features -> flatten to 1D

Visual Encoder & Perceiver Resampler

Visual Encoder

- minimize sum of text-to-image loss and image-to-text loss

normalized embedding of i-th element from language encoder

$$L_{contrastive:txt2im} = -\frac{1}{N} \sum_{i}^{N} \log \left(\frac{\exp(L_{i}V_{i}\beta)}{\sum_{j}^{N} \exp(L_{i}V_{j}\beta)} \right) \text{hormalized embedding of j-th}$$

$$L_{contrastive:im2txt} = -\frac{1}{N} \sum_{i}^{N} \log \left(\frac{\exp(V_{i}^{\mathsf{T}}L_{i}\beta)}{\sum_{j}^{N} \exp(V_{i}^{\mathsf{T}}L_{j}\beta)} \right) \text{trainable inverse temperature}$$

parameter

Visual Encoder & Perceiver Resampler

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

Perceiver Resampler

- input: variable number of image/video features
- output: fix number(64) of visual tokens
- Goal: reduce computation complexity of visual-text cross-attention

Visual Encoder & Perceiver Resampler

Perceiver Resampler

- learned parameters:
 - latent queries
 - temporal embedding
 - no spatial embedding (CNN include spatial information)
- # of output tokens = # of learned latent queries

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

١	Visual Encoder & Perceiver Resampler
	<pre>def forward(self, x):</pre>
	1111
	Args:
	x (torch.Tensor): image features
	shape (b, T, F, v, D)
	Returns:
	shape (b, T, n, D) where n is self.num_latents
	unu
	b, T, F, $v = x.shape[:4]$
	<pre># frame and media time embeddings</pre>
	<pre>if exists(self.frame_embs):</pre>
	<pre>frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v</pre>
	$x = x + frame_embs$
	x = rearrange(
	x, "b T F v d -> b T (F v) d"
) # flatten the frame and spatial dimensions
	<pre>if exists(self.media_time_embs):</pre>
	<pre>x = x + self.media_time_embs[:T]</pre>
	# blocks
	latents = repeat(self.latents, "n d -> b T n d", b=b, T=T)
	for attn, ff in self.layers:
	latents = attn(x, latents) + latents
	latents = ff(latents) + latents
	return self.norm(latents)

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

The "bridge" between visual encoder & LM

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open flamingo

Gated Cross Attention Dense block

21

The "bridge" between visual encoder & LM

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

Gated Cross Attention Dense block

The "bridge" between visual encoder & LM

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

Gated Cross Attention Dense block

The "bridge" between visual encoder & LM

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

Gated Cross Attention Dense block

- alpha_xattn and alpha_dense are set to 0 initially
- tanh(alpha_*) = 0 initially
- LM is kept intact at initialization for improved stability and performance

24

je

The "bridge" between visual encoder & LM

All the codes referenced in methodology are from OpenFlamingo - the open source version of flamingo, which is unofficial.

https://github.com/mlfoundations/open_flamingo

Gated Cross Attention Dense block

- Bridge visual encoder & LM
- Without it, the overall score drops by 4.2% and training becomes unstable
- Trade-off between performance & Resources
 - Add them at every layer is better for overall score, but leads to increasing time complexity
 - inserting them every fourth block accelerates training by 66% while decreasing the overall score by 1.9%

Training

Training in LM

Trained on a large amount of text data, providing the model general-purpose generation capabilities. Training in Flamingo

Trained on a carefully chosen mixture of complementary large-scale multimodal data coming only from the web, without using any data annotated for machine learning purposes.

- arbitrary images
- arbitrary position

Training

- Input

27

- a sequence of text y
- a sequence of images/videos x
- φ : [1, L] →→ [0, N] assigns to each text position the index of the last image/video appearing before this position

Training

- model

$$egin{aligned} p(y|x) &= \prod_{\ell=1}^L p(y_\ell|y_{<\ell}, x_{\leq \ell}), \ y_{<\ell} &\triangleq (y_1, \dots, y_{\ell-1}), \, x_{\leq \ell} \triangleq \{x_i|i \leq \phi(\ell)\} \end{aligned}$$

- benefits
 - allows the model to generalise to any number of visual inputs
 - the dependency on all previous images remains via self-attention in the LM.

Training

- loss

29

- weighted sum of per-dataset expected negative log-likelihoods of text, given the visual inputs
- accumulate gradients over all datasets > round-robin approach

$$\sum_{m=1}^{M} \lambda_m \cdot \mathbb{E}_{(x,y) \sim \mathcal{D}_m} \left[-\sum_{\ell=1}^{L} \log p(y_\ell | y_{<\ell}, x_{\leq \ell}) \right]$$

Code Walk through

- link to VScode

Training Data

Image-Text pairs data

- ALIGN dataset 1.8 billion noisy image-text pairs, **12.4** text tokens per image on average.
- LTIP dataset 312 million imagetext pairs, **20.5** text tokens per image on average
- Resolution of **320 x 320** pixels is used for images.
- **32/64** tokens sequence length is used for text.

Video-Text pairs data

- VTP dataset with 27 million short videos.
- 22 seconds duration on average.
- Resolution of **320 x 320** pixels is used for frames.
- Temporal dimension is 8 (T = 8).
- **32** tokens sequence length is used for text.

MultiModel Massive Web (M3W)

- Extracted text and images from 43 million webpages
- M3W contains **185 million images** and **182 GB of text**.
- Text filter and image filters are used to remove low quality data.
- Resolution of **320 x 320** pixels is used for images.
- Token sequence length of **256** is used for text.

This is an image of a flamingo.

Image-Text Pairs dataset [N=1, T=1, H, W, C] Video-Text Pairs dataset [N=1, T>1, H, W, C]

A kid We doing a to kickflip. web

This is a picture of my dog.

This is a picture of my cat.

Multi-Modal Massive Web (M3W) dataset [N>1, T=1, H, W, C]

Data Augmentation and Pre-Processing

- During training, 50% of text samples are prepended with a space character.
- The authors attribute the effectiveness to subword tokenizer (tokens depend on preceding space).
- Visual inputs are processed at 320 pixels (rather than 288 pixels used in pretraining)
- Image indices **\u03c6** are also perturbed (next/prev prob. 0.5) on interleaved dataset.
- For videos clips of 8 frames (1 fps) are sampled from each training video.
- However, while inference 30 video frames are processed at 3 fps.

Infrastructure/Implementation

- Model and associated infrastructure implemented using JAX and Haiku.
- All training and evaluation done on TPUv4 instances.
- Largest (80B) model trained for 15 days on 1536 chips over 16 devices.
- Megatron sharding used for Embedding/S-Attention/X-Attention/FFW.
- ZeRO stage 1 is used to shard optimizer state.
- Activations + gradients are kept in bfloat16 and params + optimizer accumulators are kept in float32.

Training and Model Details

- Model Sizes: three different sizes of the Flamingo model, scaling from 1.4 billion to 7 billion and up to 70 billion parameters.
- Vision Encoder: The pretrained vision encoder remains frozen throughout the experiments and utilizes a NFNet-F6 model trained contrastively.

	Requires	Froze	en	Trainable	Total	
	model sharding	Language Vision		GATED XATTN-DENSE	Resampler	count
Flamingo-3B	×	1.4B	435M	1.2B (every)	194M	3.2B
Flamingo-9B	×	7.1B	435M	1.6B (every 4th)	194M	9.3B
Flamingo	1	70B	435M	10B (every 7th)	194M	80B

Parameter counts for Flamingo models

Parameter counts for Flamingo models

Evaluation Benchmarks

- Development (DEV) Benchmarks: A subset of multimodal image/video and language benchmarks were selected for detailed analysis, including tasks like captioning, visual question answering, and classification.
- Testing Protocols: Evaluation focused on few-shot learning performance, where the model adapts to new tasks using a small number of support samples and is then evaluated on a separate set of query samples.

Task Adaptation With Few-Shot In-Context Learning

Few-shot interleaved prompt generation

• Evaluate the ability of the model to rapidly adapt to new tasks using in-context learning, popularised by GPT-3.

Results Overview

Comparison to State of the Art

Method	FT	Shot	OKVQA (I)	VQAv2 (I)	COCO (I)	MSVDQA (V)	VATEX (V)	VizWiz (I)	Flick30K (I)	MSRVTTQA (V)	iVQA (V)	YouCook2 (V)	STAR (V)	VisDial (I)	TextVQA (I)	NextQA (I)	HatefulMemes (I)	RareAct (V)
Zero/Few shot SOTA	x	(X)	[34] 43.3 (16)	[114] 38.2 (4)	[124] 32.2 (0)	[58] 35.2 (0)	-	-	-	[58] 19.2 (0)	[135] 12.2 (0)		[143] 39.4 (0)	[79] 11.6 (0)	-	- 1	[85] 66.1 (0)	[85] 40.7 (0)
-	X	0	41.2	49.2	73.0	27.5	40.1	28.9	60.6	11.0	32.7	55.8	39.6	46.1	30.1	21.3	53.7	58.4
Flamingo-3B	X	4	43.3	53.2	85.0	33.0	50.0	34.0	72.0	14.9	35.7	64.6	41.3	47.3	32.7	22.4	53.6	-
0	X	32	45.9	57.1	99.0	42.6	59.2	45.5	71.2	25.6	37.7	76.7	41.6	47.3	30.6	26.1	56.3	-
	X	0	44.7	51.8	79.4	30.2	39.5	28.8	61.5	13.7	35.2	55.0	41.8	48.0	31.8	23.0	57.0	57.9
Flamingo-9B	X	4	49.3	56.3	93.1	36.2	51.7	34.9	72.6	18.2	37.7	70.8	42.8	50.4	33.6	24.7	62.7	-
	X	32	51.0	60.4	106.3	47.2	57.4	44.0	72.8	29.4	40.7	77.3	41.2	50.4	32.6	28.4	63.5	-
	X	0	50.6	56.3	84.3	35.6	46.7	31.6	67.2	17.4	40.7	60.1	39.7	52.0	35.0	26.7	46.4	60.8
Flamingo	X	4	57.4	63.1	103.2	41.7	56.0	39.6	75.1	23.9	44.1	74.5	42.4	55.6	36.5	30.8	68.6	-
Fumingo	X	32	57.8	67.6	113.8	52.3	65.1	49.8	75.4	31.0	45.3	86.8	42.2	55.6	37.9	33.5	70.0	-
Pretrained			54.4	80.2	143.3	47.9	76.3	57.2	67.4	46.8	35.4	138.7	36.7	75.2	54.7	25.2	79.1	
FT SOTA	V		[34]	[140]	[124]	[28]	[153]	[65]	[150]	[51]	[135]	[132]	[128]	[79]	[137]	[129]	[62]	-
II JOIA		(X)	(10K)	(444K)	(500K)	(27K)	(500K)	(20K)	(30K)	(130K)	(6K)	(10K)	(46K)	(123K)	(20K)	(38K)	(9K)	

Comparison to SotA when Fine-tuning

Method	Iethod VQAV2		COCO	VATEX	VizWiz		MSRVTTQA	VisDial		YouCook2	Tex	tVQA	HatefulMemes	
	test-dev	test-std	test test test-dev test-		test-std	test	valid	test-std	valid	valid	test-std	test seen		
32 shots	67.6	-	113.8	65.1	49.8	-	31.0	56.8	-	86.8	36.0	-	70.0	
Fine-tuned	<u>82.0</u>	82.1	138.1	84.2	<u>65.7</u>	65.4	47.4	61.8	59.7	118.6	57.1	54.1	<u>86.6</u>	
SotA	81.3 [†]	81.3 [†]	149.6 [†]	81.4^{\dagger}	57.2 [†]	60.6^{\dagger}	46.8	75.2	75.4 [†]	138.7	54.7	73.7	84.6 [†]	
SULA	[133]	[133]	[119]	[153]	[65]	[65]	[51]	[79]	[123]	[132]	[137]	[84]	[152]	

Ablation Study

2											
	Ablated	Flamingo-3B	Changed	Param.	Step	COCO	OKVQA	VQAv2	MSVDQA	VATEX	Overall
	setting	original value	value	count ↓	ume ↓		top1	top1	top1	CIDEI	score
		3.2B	1.74s	86.5	42.1	55.8	36.3	53.4	70.7		
8) Training data		w/o Video-Text pairs	3.2B	1.42s	84.2	43.0	53.9	34.5	46.0	67.3
		All data	w/o Image-Text pairs	3.2B	0.95s	66.3	39.2	51.6	32.0	41.6	60.9
(1)		All data	Image-Text pairs \rightarrow LAION	3.2B	1.74s	79.5	41.4	53.5	33.9	47.6	66.4
			w/o M3W	3.2B	1.02s	54.1	36.5	52.7	31.4	23.5	53.4
(ii)	Optimisation	ptimisation Accumulation Round Robin		3.2B	1.68s	76.1	39.8	52.1	33.2	40.8	62.9
(iii)	Tanh gating	1	X	3.2B	1.74s	78.4	40.5	52.9	35.9	47.5	66.5
(:)	Cross-attention	GATED	VANILLA XATTN	2.4B	1.16s	80.6	41.5	53.4	32.9	50.7	66.9
(\mathbf{IV})	architecture	XATTN-DENSE	GRAFTING	3.3B	1.74s	79.2	36.1	50.8	32.2	47.8	63.1
) Cross-attention frequency	Every	Single in middle	2.0B	0.87s	71.5	38.1	50.2	29.1	42.3	59.8
(v)			Every 4th	2.3B	1.02s	82.3	42.7	55.1	34.6	50.8	68.8
			Every 2nd	2.6B	1.24s	83.7	41.0	55.8	34.5	49.7	68.2
(=)	D 1	Perceiver	MLP	3.2B	1.85s	78.6	42.2	54.7	35.2	44.7	66.6
(VI)	Resampler		Transformer	3.2B	1.81s	83.2	41.7	55.6	31.5	48.3	66.7
(Vision encoder	ler NFNet-F6	CLIP ViT-L/14	3.1B	1.58s	76.5	41.6	53.4	33.2	44.5	64.9
(VII)			NFNet-F0	2.9B	1.45s	73.8	40.5	52.8	31.1	42.9	62.7
(Enoring IM	1	✗ (random init)	3.2B	2.42s	74.8	31.5	45.6	26.9	50.1	57.8
(viii)	Freezing LM	V	X (pretrained)	3.2B	2.42s	81.2	33.7	47.4	31.0	53.9	62.7

Limitations

- Worse performance on classification tasks than contrastive models
- Direct inheritance of all the biases
- Toxicity and weaknesses of the Language Model
- Occasional hallucination and un-grounded guesses in open-ended visual question answering tasks

Future Work

Integration of other modalities such as audio