
CMU 11868 LLM Systems
Spring 2024 Assignment 4

The goal of this assignment is to implement distributed training methods, including data
parallelism and pipeline parallelism.

Setting up the code
The starting code base is provided in https://github.com/llmsystem/llmsys_s24_hw4.
git. You will need to first install the requirements:

pip install -r requirements.txt

Setting up the environment
We strongly suggest you using machines in PSC to complete this homework. This is the link
to the guide of using PSC. The command to require an interactive node with multiple GPUs
is as follows.

use GPU-shared flag for n <= 4
use GPU flag for n = 8 or 16
an interactive job is at most 8 hours (1 hour in this example)
interact -p GPU-shared --gres=gpu:v100-32:n -t 1:00:00

Requesting machines needs time, which will be much longer if there are lots of people request-
ing resources at the same time. Please plan your time to finish this assignment accordingly.

Problem 1: Data Parallel (50)
In this part, you are going to implement the data parallel training for GPT2. You are
only allowed to use the following two packages to implement GPU communication. All the
packages you need are defined in the starter codes. You must not write new import codes.

import torch.distributed as dist
from torch.multiprocessing import Process

Problem 1.1

1. Implement the helper function partition_dataset in data_parallel/dataset.py:

def partition_dataset(
dataset, batch_size=128, collate_fn=None

) -> Tuple[DataLoader, int]:
...

1

https://github.com/llmsystem/llmsys_s24_hw4.git
https://github.com/llmsystem/llmsys_s24_hw4.git
https://docs.google.com/document/d/1FzNWon1GePQNCqjx3tiXU-FQtxeBDruvjwORWRHhoVs/edit?usp=sharing

CMU 11868 LLM Systems
Spring 2024 Assignment 4

Figure 1: Data Parallel

Hint:

1. Calculate the partitioned batch size. We define partitioned batch size as the batch
size on every individual device. The partitioned batch size for each GPU, for
instance, would be 128//4 = 32 if we have four GPUs and the total batch size is 128.

2. Create a partitioner class DataPartitioner with dataset and a list of partitioned
sizes. The dataset’s fraction that will be distributed among the parallel devices is
represented by the list of partitioned sizes, which is a list of float values. For instance,
if the dataset is divided equally over 4 GPUs, the list of sizes should look like this:
[0.25, 0.25, 0.25, 0.25].

3. Get the current partition dataset given rank by using the use function in DataParti-
tioner.

4. Wrap the dataset with torch.utils.data.DataLoader, remember to customize the
collate_fn from our customized function defined in project/utils.py.

2. Implement dataset class class Partition() in data_parallel/dataset.py:

class Partition():
def __init__(self, data, index):

...

def __len__(self):
...

2

CMU 11868 LLM Systems
Spring 2024 Assignment 4

def __getitem__(self, index):
...

and partition class class DataPartitioner() in data_parallel/dataset.py:

class DataPartitioner():
def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):

...

def use(self, partition):
...

Hint:

1. Create a list of indices for every data point and use rng to shuffle the indices. The
indices should be integers. A simple way can be a list like this [0, 1, ..., len(data)− 1].

2. Create different partitions of indices according to sizes and store in self.partitions.
Let’s suppose that we have 8 data points, and 2 partitions for the data. One way of
self.partitions can be [[0, 3, 6, 7], [1, 2, 4, 5]].

To summarize, the partition_dataset function is to help create a training dataset partition
you need for a single device within a cluster of devices. The Partition class is used to define
a dataset class to return the data according to partitioned indices. The DataPartitioner
class is used to partition any datasets according to different workload defined as sizes.

Pass the test

python -m pytest -l -v -k "a4_1_1"

We simply test whether you distribute the data into different partitions without overlapping.

Problem 1.2

1. Implement function setup for data parallel training in project/run_data_parallel.py:

def setup(rank, world_size, backend):
'''Setup Process Group'''
...

and the code in main section.

if __name__ == '__main__':
...
processes = []

3

CMU 11868 LLM Systems
Spring 2024 Assignment 4

'''Create Process to start distributed training'''

This part is to help you understand how to setup the process group to manage the distributed
work on different devices. We create processes to complete the training work individually.

Hint:

1. For the setup function, please set the environment variables MASTER_ADDR as localhost
or 127.0.0.1 and MASTER_PORT as 11868. Then use init_process_group function in
torch.distributed to init the process group

2. In the main section, you can use Process from torch.distributed to define the
process

3. We define the number of processes as world_size

4. You should create processes, start the processes to work and terminate resources prop-
erly

2. Implement communication function average_gradients to aggregate gradients:

def average_gradients(model):
'''Aggregate the gradients from different GPUs'''
...

Every device only trains on a portion of the data, but we still need the global gradients.
This function is important for gradient communication and aggregation. You need to walk
through the parameters of the model and call function in torch.distributed to aggregate
the gradients.

After implementing the function average_gradients, please call the function after backward
propagation in the train function in project/utils.py.

To pass the test here, you should first run the following command to store the gradients of
one batch. Please set the world_size as 2.

python project/run_data_parallel.py --pytest True --n_epochs 1

Then check whether there are weight files model{rank}_gradients.pth in your tests di-
rectory. Run the following command to compare the gradients on different devices.

python -m pytest -l -v -k "a4_1_2"

We test whether you successfully accumulate the gradients from all the devices and broadcast
the reduced gradients across all the devices.

4

CMU 11868 LLM Systems
Spring 2024 Assignment 4

Problem 1.3

Compare the performance between training on single device and on multiple devices. To
evaluate performance, we encourage you to drop the results from the first epoch or at least
have one warmup run before collecting the metrics.

single node
python project/run_data_parallel.py --world_size 1 --batch_size 64

double nodes
python project/run_data_parallel.py --world_size 2 --batch_size 128

We use two metrics to measure performance training time and tokens_per_second. We
provide the code to print out the average training time and average tokens_per_second
over several epochs and also store them in the json files.

We average the training time over epochs from multiple devices and compare them with
the training time with a single device. That is to say, if you have two devices, you calculate
the training time separately for different devices.

For to, we sum up the tokens_per_second from multiple devices as the throughput and
compare the throughput with a single device. The throughput should also be an average
number over epochs because we usually repeat the experiments to avoid outliers when
collecting metrics.

To visualize the scaling improvement, please plot 2 figures of the 2 performance metrics
separately. A figure plot helper file can be found in project/plot.py. A sample figure is
shown in Figure 2. Please save the figures in the directory submit_figures.

(a) Training time (b) Tokens per second

Figure 2: Data Parallel Performance Sample Figure

You are encouraged to increase the size of dataset or increase the devices to explore the

5

CMU 11868 LLM Systems
Spring 2024 Assignment 4

scalability.

Problem 2: Pipeline Parallel (50)
In this part, you are going to implement pipeline parallel for GPT2. You should only use
packages already imported in the codebase.

Figure 3: Pipeline Parallel

There are three sub-modules for this problem:

Problem 2.1

Implement the helper function _split_module in pipeline/partition.py. We are doing
layer-wise split here: _split_module takes in an nn.Sequential module, and splits the module
into multiple partitions. Each partition resides in a different GPU (each colored row in
Figure 4).

def _split_module(
modules: nn.Sequential

) -> Tuple[List[nn.Sequential], List[torch.device]]:
...

Implement the helper function _clock_cycles in pipeline/pipe.py: This produces a
schedule for each timestep, based on the number of minibatches and the number of par-
titions. This corresponds to each vertical step in Figure 4.

def _clock_cycles(
num_batches: int,
num_partitions: int

) -> Iterable[List[Tuple[int, int]]]:
...

Pass the tests:

6

CMU 11868 LLM Systems
Spring 2024 Assignment 4

python -m pytest -l -v -k "a4_2_1"

Problem 2.2

Understand the code in worker.py and implement Pipe.forward and Pipe.compute in
pipeline/pipe.py.

The Pipe module is a generic wrapper over any nn.Sequential modules to convert them into
a pipelined module. Pipe moves the input through the pipeline, by splitting the input into
multiple microbatches (each item in Figure 4), and computing the microbatches in parallel.

class Pipe(nn.Module):
def forward(self, x):

...

def compute(self,
batches,
schedule: List[Tuple[int, int]]

) -> None:
...

Hint: In create_workers, we spawn a worker thread per device. Each worker takes tasks
from in_queue and puts the results in out_queue.

To send a task to a worker, you need to (1) wrap the computation in a function and create a
Task object, (2) put the task in the corresponding in_queue for the device, and (3) retrieve
the results from out_queue.

Pass the tests:

python -m pytest -l -v -k "a4_2_2"

Problem 2.3

Implement _prepare_pipeline_parallel in pipeline/model_parallel.py.

This part prepares a GPT-2 model for pipeline parallelism. Note that different blocks in
GPT-2 are already moved to different GPUs in GPT2ModelCustom.parallelize. This func-
tion extracts the transformer blocks (stored in self.h) in the model and packages them into
an nn.Sequential module for Pipe.

class GPT2ModelParallel(GPT2ModelCustom):
def _prepare_pipeline_parallel(self, split_size=1):

...

7

CMU 11868 LLM Systems
Spring 2024 Assignment 4

Figure 4: Example 2-GPU Partitioning for GPT-2 (12 decoder layers). Note that we are
doing layer-wise splits only for the decoder blocks.

Train the GPT2 model on two GPUs. Observe and compute speedups from pipelining.

python project/run_pipeline.py --model_parallel_mode='model_parallel'
python project/run_pipeline.py --model_parallel_mode='pipeline_parallel'

To visualize the scaling improvement, please plot 2 figures of the 2 performance metrics
separately. A sample figure is shown in Figure 5. Please save the figures in the directory
submit_figures.

(a) Training time (b) Tokens per second

Figure 5: Pipeline Parallel Performance Sample Figure

8

CMU 11868 LLM Systems
Spring 2024 Assignment 4

Submission
Please submit the whole llmsys_s24_hw4 as a zip on canvas. We will inspect your codes
manually to make sure that you follow the implementation restrictions on specific packages.
We will also compile and run your codes to make sure they are runnable and check your
figures of the performance metrics.

9

