CMU 11868 LLM Systems .
Spring 2024 Assignment 3

In this assignment, you'll extend the work from Assignment 1 and 2 to speed up the trans-
former model for more efficient training and inference. You will focus on optimizing the
Softmax and LayerNorm batch reduction operations by writing custom CUDA code.

The CUDA optimizations are based on methods from the lightseq2 paper [I]. We strongly
encourage you to refer to this paper and the relevant lecture slides while working on this
assignment. Before start writing the CUDA code, make sure you have read through the
writeup and understood what each kernel is doing.

Setting up the code

The starting code base is provided in https://github.com/l1lmsystem/11lmsys_s24_hw3.
You will need to merge it with your implementation in the previous assignments. Here are
our suggested steps:

1. Install the requirements and miniTorch:
pip install -r requirements.extra.txt
pip install -r requirements.txt
pip install -e .
2. Copy the CUDA kernels combine.cu from Assignment 2 and compile it:

combine.cu -> src/combine.cu
bash compile_cuda.sh

3. Copy autodiff.py from Assignment 1:

autodiff.py -> minitorch/autodiff.py

4. Keep copying several other functions from Assignment 2 when completing this one.

Problem 1.1: Softmax Forward (20)

In this part, you will implement a fused kernel of softmax in the attention mechanism. The
softmax function for a vector x is given by:

softmax(x); = : (1)

where z; is the i-th element of x.

The kernel also incorporates implementation of attention mechanisms, particularly in its
handling of attention masks. In attention mechanisms, masks are used to control the focus
of the model on certain parts of the input.

https://github.com/llmsystem/llmsys_s24_hw3

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

1. Implement the CUDA kernel of Softmax in src/softmax_kernel.cu.

template <typename T, int block_dim, int ele_per_thread>
__global__ void ker_attn_softmax(T *inp, ...) {

}

template <typename T, int block_dim, int ele_per_thread>
__global__ void ker_attn_softmax_1t32(T *inp, ...) {

}

Note that ker_attn_softmax_1t32 and ker_attn_softmax are almost identical except that
ker_attn_softmax_1t32 is designed for sequence length less than 32, and therefore does
not require block-level parallelism. To give you an easy start, we provide you with the
implementation of ker_attn_softmax_1t32. You should go over its implementation with
the explanation below, and then implement ker_attn_softmax yourself.

2. Compile the CUDA file.

>>> nvcc -o minitorch/cuda_kernels/softmax_kernel.so --shared
- src/softmax_kernel.cu -Xcompiler -fPIC

3. Bind the kernel with miniTorch in minitorch/cuda_kernel_ops.py (this is given as an
example for binding).

Hint: you should pass cuda stream to the function, define it with

stream = torch.cuda.current_stream().cuda_stream

class CudaKernelOps(TensorQOps):
Ostaticmethod
def attn_softmax_fw(inp: Tensor, mask: Tensor):

and in minitorch/tensor_functions.py:

class Attn_Softmax(Function):
@staticmethod
def forward(ctx: Context, inp: Tensor, mask: Tensor) -> Tensor:

4. Pass the test and notice an average speedup around 6.5X.

>>> python kernel_tests/test_softmax_fw.py

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

Understanding Softmax Forward Kernels

As described in the paper and lectures (slide 26), The ker_attn_softmax_1t32 and
ker_attn_softmax kernels are differentiated mainly by their approach to reduction opera-
tions:

e ker attn softmax 1t32: Utilizes warp-level primitives for reduction, suitable for
smaller input sizes. This method allows for efficient parallel reduction without the
need for block-wide synchronization.

e ker attn softmax: Employs block-level reduction techniques, making it more suit-
able for larger input sizes. It involves two phases of reduction (max and sum) fol-
lowed by a normalization step, with synchronization points to ensure consistency across
threads.

Algorithmic Steps
The softmax computation in both kernel can be divided into three main steps:

1. Compute Max: Identifying the maximum value for normalization, to avoid numerical
overflow in the exponential step.

2. Compute Exponential and Sum: Calculating the exponentials of the normalized
values and their sum for normalization.

3. Compute Final Result: Normalizing the exponentials with the sum to obtain soft-
max probabilities. Store the results using CUB library’s BlockStore to minimize
memory transactions.

Computing the Maximum Value for Softmax Normalization

The implementation of this part are identical in the two kernels. You should go over the
code in ker_attn_softmax_1t32 and understand how this is implemented.
First, compute max on each thread (thread local max):

1. Initialization: Two arrays are declared:

e ‘val[token per reduce|lele per thread| for storing intermediate values, includ-
ing any adjustments from the attention mask.

e ‘1 max|token per reduce] for recording the maximum value found for each to-
ken, initialized with ‘REDUCE_FLOAT INF NEG’ to ensure that any actual

input value will be larger.

2. Tterative Computation: iterates over each token and its elements in two nested
loops. For each element:

(a) Future Token Masking: If future tokens are to be masked (‘mask future’ is

‘true’), and the element index suggests it is a future token, ‘temp val’ is set to
‘REDUCE_FLOAT INF NEG’, excluding it from the max computation.

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

(b) Attention Mask Adjustment: If an attention mask is provided, its correspond-
ing value is added to the input value, adjusting it based on the mask.

(c) Intermediate Value Storage: The adjusted value (‘temp val’) is stored in the
‘val” array for subsequent steps.

(d) Maximum Value Update: The ‘fmaxf’ function updates ‘1 max’ to the max-
imum value between its current value and ‘temp val’, ensuring that after all
iterations, ‘1 max’ holds the maximum value for each token.

After getting thread local max, both kernels reduce the results for block max:

e The ker_attn_softmax_1t32 kernel performs warp-level reduction using a custom
warpReduce function.

e The ker_attn_softmax kernel conducts a block-wide reduction using CUB library’s
BlockLoad primitive and uses shared memory to distribute the max value among
threads.

Problem 1.2: Softmax Backward (20)

The gradient of the softmax function for a vector x is given by:

Osoftmax(x);

= softmax(x);(d;; — softmax(x);) (2)
al'j

where 0;; is the Kronecker delta.
1. Implement launch_attn_softmax_bw in src/softmax_kernel.cu.

void launch_attn_softmax_bw(float *out_grad,
const float *soft_inp, int rows,
int softmax_len,
cudaStream_t stream)

In lectures we described the use of templates for tuning kernel parameters. When im-
plementing launch_attn_softmax_bw, you should compute the ITERATIONS parameter
of ker_attn_softmax_bw depending on different max sequence lengths in {32, 64, 128,
256, 384, 512, 768, 1024, 2048}.

Hint: refer to the way templates are used in launch_attn_softmax.

template <typename T, int ITERATIONS>
__global__ void ker_attn_softmax_bw(T *grad, ...) {

X

2. Compile the CUDA file.

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

>>> nvcc -0 minitorch/cuda_kernels/softmax_kernel.so --shared
- src/softmax_kernel.cu -Xcompiler -fPIC

3. Bind the kernel with miniTorch in minitorch/cuda_kernel_ops.py.
Hint: you should pass cuda stream to the function, define it with
stream_1 = torch.cuda.current_stream().cuda_stream

class CudaKernelOps(TensorOps):
@staticmethod
def attn_softmax_bw(out_grad: Tensor, soft_inp: Tensor):

and in minitorch/tensor_functions.py:

class Attn_Softmax(Function):
O@staticmethod
def backward(ctx: Context, out_grad: Tensor) -> Tensor:

4. Pass the test and notice an average speedup around 0.5 with our given default max
lengths {32, 64, 128, 256, 384, 512, 768, 1024, 2048}. You can try other setups of
max length and achieve a higher speedup, but it will not be graded.

>>> python kernel_tests/test_softmax_bw.py

Understanding Softmax Backward Kernel

The ker_attn_softmax_bw function is a CUDA kernel for computing the backward pass of
the softmax function in self-attention mechanisms. Here are the steps:

Initialization

e The function calculates the backward pass for each element in the gradient and the
output of the softmax forward pass.

e The grid and block dimensions are configured based on the batch size, number of heads,
and sequence length.

Gradient Calculation

e The function iterates over the softmax length, with each thread handling a portion of
the data.

e It loads the gradient and input (output of softmax forward) into registers.

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

e A local sum is computed for each thread, which is a key part of the gradient calculation
for softmax.

Gradient Computation
1. The sum is shared across the warp using warp shuffle operations.

2. The final gradient for each element is computed by modifying the forward pass output
with the computed sum.

Problem 2.1: LayerNorm Forward (20)

LayerNorm normalizes the input a by:

x; — pu(x)
o(z)

Yi =" + B; (3)

where p(x) and o(x) are the mean and the standard deviation of @ respectively, and « and
3 are the learnable affine transform parameters in LayerNorm. Noting that Equation [3] takes
two reduction operations since typical computation of the standard deviation requires the
mean, meaning that they can not be computed in parallel.

The speedup can be achieved by computing the standard deviation with:

o(@) = \Jula?) - () + e (1

where € = 1e~® is a small value added to the variance for numerical stability. By doing so, the
means of £ and x?, i.e. two batch reduction operations, can then be concurrently executed.

1. Implement the CUDA kernel of LayerNorm forward in src/layernorm_kernel.cu.

template <typename T>
__global__ void ker_layer_norm(T *1ln_res, ...) {

by

2. Compile the CUDA file.

>>> nvcc -o minitorch/cuda_kernels/layernorm_kernel.so --shared
- src/layernorm_kernel.cu -Xcompiler -fPIC

3. Bind the kernel with miniTorch in minitorch/cuda_kernel_ops.py:
Hint: you should pass cuda stream to the function, define it with
stream_1 = torch.cuda.current_stream().cuda_stream

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

class CudaKernelOps(TensorQOps):
Ostaticmethod
def layernorm_fw(inp: Tensor, gamma: Tensor, beta: Tensor):

and in minitorch/tensor_functions.py:
class LayerNorm(Function):
@staticmethod
def forward(ctx: Context, ...) -> Tensor:
return out
4. Pass the test and notice an average speedup around 15.8%.

>>> python kernel_tests/test_layernorm_fw.py

Understanding LayerNorm Forward Kernels

In this kernel, we are going to use float4 to speed up adding numbers. It can lead to
improved performance when dealing with large datasets. The main advantage comes from
the ability to process multiple data elements simultaneously, taking advantage of the SIMD
(Single Instruction, Multiple Data) parallelism inherent in GPUs.

When working with CUDA programming and float4, we need to use reinterpret_cast
to convert between types. In src/layernorm_kernel.cu, we give an example of how to
compute the sum of x in step 1. In this example, reinterpret_cast is used to convert a
float array inp to a float4 vector inp_f4. Each thread within a block calculates 1_sum for
its assigned elements in inp_f4.

Algorithmic Steps

1. Compute the sums of & and x? with reinterpret_cast by casting to float4 for
speedup

2. Compute reduce sum with blockReduce and add epsilon with LN_EPSILON

3. Compute layernorm result with reinterpret_cast by casting to float4 for speedup

Problem 2.2: LayerNorm Backward (20)

Let x; = m";(—’;:()m), then the final gradient of &; can be re-written into:

. Vy v, 1 . A
Va; = o molE) (; Yy, +wz;Vyﬂij>, (5)

7

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

where m is the dimension of &, and V& and Vy are the input and output gradients. The
speedup can then be achieved by concurrently executing two batch reduction operations in
the parentheses in Equation [5

The gradients of v, and 3, are:

Vo, = Z Vyjﬁjj? VB, = Z Vyj' (6)
J J

1. Implement the CUDA kernel of LayerNorm backward in src/layernorm_kernel.cu.

template <typename T>
__global__ void ker_ln_bw_dinp(T *inp_grad, ...) {

}

template <typename T>
__global__ void ker_ln_bw_dgamma_dbetta(T *gamma_grad, ...){

3

2. Compile the CUDA file.

>>> nvcc -o minitorch/cuda_kernels/layernorm_kernel.so --shared
- src/layernorm_kernel.cu -Xcompiler -fPIC

3. Bind the kernel with miniTorch in minitorch/cuda_kernel_ops.py:
Hint: you should pass cuda stream to the function, define it with
stream_1 = torch.cuda.current_stream().cuda_stream

class CudaKernelOps(TensorQOps):
O@staticmethod
def layernorm_bw(out_grad: Tensor, ...):

and in minitorch/tensor_functions.py:

class LayerNorm(Function):
@staticmethod
def backward(ctx: Context, out_grad: Tensor) -> Tensor:

4. Pass the test and notice an average speedup around 3.7 X%.

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

>>> python kernel_tests/test_layernorm_bw.py

Understanding LayerNorm Backward Kernels

In this kernel, you are going to implement the backward function for the input « in function
ker_1ln_bw_dinp, and the one for the learnable parameters of LayerNorm =, and 3, in
function ker_1n_bw_dgamma_dbetta.

The goal is to take advantage of CUDA’s thread cooperation features, such as shared memory
and shuffle operations, to efficiently perform the reduction within a thread block, so as to
improve memory access patterns and reduce the overall computation time.

Input Gradients:

Initialization
Each thread is responsible for a specific element in the inp_grad array.

Algorithmic Steps
1. Compute Vy,v, with reinterpret_cast by casting to float4 for speedup
2. Compute &; with reinterpret_cast by casting to float4 for speedup
3. Compute reduce sum for Vy,v, and Vy,v,&; with blockReduce
4. Compute final gradient

Gamma and Beta Gradients:

Initialization

Shared memory arrays betta_buffer and gamma_buffer are declared to store intermediate
results within the thread block. CUDA thread blocks cg: :thread_block and thread block
tiles cg: :thread_block_tile are used to organize threads.

Loop Over Rows
Threads in the y-dimension loop over rows, calculating partial gradients for each row based
on the given inputs (out_grad, inp, means, vars).

Shared Memory Storage
The computed partial gradients values are stored in shared memory arrays betta_buffer
and gamma_buffer in a tiled manner.

Reduction within Thread Block

Threads cooperate to perform a reduction operation on betta_buffer and gamma_buffer
using g.shfl_down (shuffle down) operations along threadIdx.y. g.shfl_down(value,
delta) is used to perform a warp-level reduction, where the value is a variable holding a
partial result, and delta is the warp-wide offset specifying the distance by which the threads

CMU 11868 LLM Systems .
Spring 2024 Assignment 3

should shuffle down. This helps avoid bank conflicts and improves warp-level parallelism,
making it a powerful tool for efficient parallel reduction operations within a thread block.

Final Result Assignment
The final reduction result is assigned to the appropriate positions in the global output arrays
(gamma_grad and betta_grad).

Algorithmic Steps
1. Compute the partial gradients by looping across inp rows
2. Store the partial gradients in the shared memory arrays
3. Compute the reduce sum of the shared memory arrays with g.shfl_down

4. Assign the final result to the correct position in the global output

Problem 3: Adopt Fused Kernels in Transformer (20)

The improved CUDA kernels are now bound with miniTorch library. Now integrate the
improved CUDA kernels into the transformer in Assignment 2.

1. Replace the softmax and layernorm operations in MultiHead Attention, TransformerLayer,
and DecoderLM with your accelerated kernels in minitorch/modules_transfomer.py.

2. Train the transformer for one epoch, with and without using fused kernel, and record the
running time.

>>> python project/run_machine_translation.py --use-fused-kernel False
>>> python project/run_machine_translation.py --use-fused-kernel True

3. According to Amdahl’s law, the improvement should not be significant since only softmax
and layernorm are improved, but you should still notice an average speedup around 1.1x.

Submission

Please submit the whole 11msys_s24_hw3 as a zip on canvas.

References

[1] Xiaohui Wang, Yang Wei, Ying Xiong, Guyue Huang, Xian Qian, Yufei Ding, Mingxuan
Wang, and Lei Li. LightSeq2: Accelerated training for transformer-based models on
GPUs. In Proceedings of The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’22), November 2022.

10

