We will continue adding modules to miniTorch framework. In this assignment, students will implement a decoder-only transformer architecture (GPT-2), train it on machine translation task (IWSLT14 German-English), and benchmark their implementation.

Clone the repository for the homework https://github.com/llmsystem/llmsys_s24_hw2/

Setting up your code

• Install requirements

```
pip install -r requirements.extra.txt
pip install -r requirements.txt
```
• Install minitorch

pip install -e .

• Copy autodiff.py and run_sentiment.py from Assignment 1

```
autodiff.py -> minitorch/autodiff.py
run_sentiment.py -> project/run_sentiment_linear.py
```
Note the slight different suffix "_linear".

• Copy combine.cu from Assignment 1

```
combine.cu -> src/combine.cu
```
Please ONLY copy your solution of assignment 1 in MatrixMultiplyKernel, mapKernel, zipKernel, reduceKernel to the combine.cu file for assignment 2.

We have made some changes in combine.cu and cuda_kernel_ops.py for assignment 2 compared with assignment 1. We have relocated the GPU memory allocation, deallocation, and memory copying operations from cuda_kernel_ops.py to combine.cu, both for host-to-device and device-to-host transfers. We also change the datatype of Tensor._tensor._storage from numpy.float64 to numpy.float32.

• Compile your cuda kernels

bash compile_cuda.sh

Problem 1: Implementing Scalar Power and Tanh (20 pts)

MiniTorch is still missing a few important arithmetic operations that we need to implement a Transformer model: the element-wise power function and element-wise tanh function.

- 1. For each function, you'll have to fill out the forward and backward function in minitorch/ tensor_functions.py as described in the minitorch demo.
- 2. Complete the POW and TANH function in src/combine.cu

Check out [this link for relevant math functions.](https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html#group__CUDA__MATH__SINGLE)

Adam Optimizer

We provide Adam optimizer for HW2 at [minitorch/optim.py.](https://github.com/llmsystem/llmsys_s24_hw2/blob/main/minitorch/optim.py#L33) To verify the Adam optimizer (which now uses your Pow function), the validation accuracy of project/run—sentiment—linear.py should get above 60% in around 5 epochs.

Reference Performance

Implementing a Decoder-only Transformer Model

You will be implementing a Decoder-only Transformer model in modules_transformer.py. This will require you to first implement additional modules in modules_basic.py, similar to the Linear module from assignment 1.

We will recreate the GPT-2 architecture as described in [Language Models are Unsupervised](https://paperswithcode.com/paper/language-models-are-unsupervised-multitask) [Multitask Learners.](https://paperswithcode.com/paper/language-models-are-unsupervised-multitask)

Please read the implementation details section of the README file before starting.

Problem 2: Implementing Tensor Functions (20 pts)

You will need to implement the following functions in minitorch/nn.py. Additional details are provided in the README.md and each function's docstring.

- GELU
- logsumexp
- one_hot
- \bullet softmax_loss^{[1](#page-2-0)}

$$
\ell(z, y) = \log \sum_{i=1}^{k} \exp z_i - z_y.
$$
 (1)

The input to our softmax loss (softmax + cross entropy) function is logits and target. logits is a (minibatch, C) tensor where each row is a sample and contains the raw logits before softmax. target is a (minibatch,) tensor where each row correspond to the class of a sample.

You'll want to utilize a combination of logsumexp, one_hot, and other tensor functions to compute this efficiently. (Our solution is only 3 lines long).

Note: we want to return without reduction $=$ None, so the resulting shape is (minibatch,)

¹See slide 5 here for formula [https://llmsystem.github.io/llmsystem2024spring/assets/files/](https://llmsystem.github.io/llmsystem2024spring/assets/files/llmsys-03-autodiff-d3f8a17139dbf41fe16150b3d86ccdce.pdf) [llmsys-03-autodiff-d3f8a17139dbf41fe16150b3d86ccdce.pdf](https://llmsystem.github.io/llmsystem2024spring/assets/files/llmsys-03-autodiff-d3f8a17139dbf41fe16150b3d86ccdce.pdf)

Problem 3: Implementing Basic Modules (20 pts)

Here are the following modules you will have to implement:

- 1. Linear: You can use your implementation from Assignment 1, but will need to adapt it slightly given the new backend argument.
- 2. Dropout: Applies dropout. Note: if the flag self.training is false, then do not zero out any values in the input tensor.
- 3. LayerNorm1d: Applies layer normalization to a 2D tensor.
- 4. Embedding: Maps one-hot word vectors from a dictionary of fixed size to embeddings.

Problem 4: Implementing a Decoder-only Transformer Language Model (20 pts)

Finally, you will be implementing GPT-2 architecture in minitorch/modules_transformer. py with four modules and your earlier work.

- MultiHeadAttention: implements masked multi-head attention.
- FeedForward: implements the feed-forward operation.
- TransformerLayer: implements a transformer layer with the pre-LN architecture.
- **DecoderLM**: implements the full model with input and positional embeddings.

MultiHeadAttention

GPT-2 implements multi-head attention, meaning that each K, Q, V tensors formed from X is partitioned into h heads. The self-attention operation is then carried out for each batch and head, and the output is then reshaped to obtain the correct shape. Finally, the output is passed through a final out projection layer.

- 1. Projecting X into Q, K^T, V in the project_to_query_key_value function In the project_to_query_key_value function, the K, Q, V matrices are formed by projecting the input $X \in \mathbb{R}^{B \times S \times D}$ where B is the batch size, S is the sequence length, and D the hidden dimension. Formally, let h be the number of heads, D be the dimension of the input, and D_h be the dimension of each head where $D = h \times D_h$:
	- $X \in \mathbb{R}^{B \times S \times D}$ gets projected^{[2](#page-4-0)} to $Q, K, V \in \mathbb{R}^{B \times S \times D}$
	- $Q \in \mathbb{R}^{B \times S \times (h \times D_h)}$ gets unraveled to $Q \in \mathbb{R}^{B \times S \times h \times D_h}$
	- $Q \in \mathbb{R}^{B \times S \times h \times D_h}$ gets permuted to $Q \in \mathbb{R}^{B \times h \times S \times D_h}$

Note you'll do the same for the V matrix and take care to transpose K along the last two dimensions.

2. Computing Self-Attention

Let Q_i, K_i, V_i be the Queries, Keys, and Values for head i. You'll need to compute

$$
\mathrm{softmax}\left(\frac{Q_i K_i^T}{\sqrt{D_h}}+M\right) V_i
$$

with batched matrix multiplication (which we've implemented for you) across each batch and head. M is the causal mask added to prevent your transformer from attending to positions in the future, which is crucial in an auto-regressive language model.

Before returning, let $A \in \mathbb{R}^{B \times h \times S \times D_h}$ denote the output of self-attention. You'll need to:

• Permute A to $A \in \mathbb{R}^{B \times S \times h \times D_h}$

²We could actually do this with a single layer and split the output in 3.

- Reshape A to $A \in \mathbb{R}^{B \times S \times D}$
- 3. Finally pass self-attention output through the out projection layer

FeedForward

You'll pass the output of self-attention through:

- 1. The first linear layer to expand the hidden dimension to 256
- 2. The GELU activation function
- 3. The second linear layer to shrink the dimension back to D
- 4. A dropout layer

TransformerLayer

Let's combine the MultiHeadAttention and Feedforward modules to form one layer of our transformer. Note that GPT-2 architecture employs the pre-LN architecture as shown below. You'll want to follow the pre-LN variant on the right.

The differences can be described in [On Layer Normalization in the Transformer Architecture.](https://arxiv.org/pdf/2002.04745.pdf)

Figure 1: (a) Post-LN Transformer layer; (b) Pre-LN Transformer layer.

DecoderLM

Let's combine all our work to create our final model. Your input will be a tensor containing a minibatch of tokens X of shape (batch size, sequence length). You'll need to:

- 1. Get the token and positional embeddings for your input X
- 2. Add the embeddings together [3](#page-6-0) before passing them through a dropout layer
- 3. Pass your input now of shape (batch size, sequence length, embedding dimension) through all your transformer layers
- 4. Pass your input through a final LayerNorm
- 5. Pass your input through a final linear layer to project your input's hidden dimension to the vocabulary size to perform inference or pass through your loss function.

Figure 2: [Transformer](https://arxiv.org/pdf/1706.03762.pdf) [Decoder](https://arxiv.org/pdf/1706.03762.pdf)

³See [Jurasky and Martin, Chapter 10.1.3](https://web.stanford.edu/~jurafsky/slp3/10.pdf) for more details

Problem 5: Machine Translation Pipeline (20 pts)

Implement a training pipeline of machine translation on IWSLT (De-En).

1. collate_batch: Prepares a batch of examples for model training or evaluation by tokenizing and padding them.

def collate_batch(examples, src_key, tgt_key, tokenizer, model_max_length, backend): ...

Parameters

- examples: A list of examples to be processed.
- src_key: The key for accessing source texts in the examples.
- tgt_key: The key for accessing target texts in the examples.
- tokenizer: The tokenizer to be used for encoding the texts.
- model_max_length: The maximum sequence length the model can handle.
- backend: The backend of minitorch tensors.

Returns A dictionary containing keys: "input_ids", "labels", "label_token_weights", each indicates a minitorch tensor with shape (len(examples), model_max_length).

Notes ["input_ids"] for every example in the De-En translation, the "input_ids" will be: <de_token_ids> + <de_eos_id> + <en_token_ids> + <en_eos_id> + <pad_ids> where the pad_ids makes the length of input_ids to be model_max_length

["labels"]: the next tokens to be predicted, which will be used in the cross-entropy loss function, e.g., for a example tokenized as [a, b, c, d], input_ids and labels can be [a, b, c] and [b, c, d], respectively.

["label_token_weights"] The "label_token_weights" are used to differentiate between the source (weight $= 0$) and target (weight $= 1$) tokens for loss calculation purposes. (the MLE loss is computed on target tokens only.)

2. loss_fn: Compute MLE loss for a batch.

```
def loss fn(batch, model):
    ...
```
Parameters

- batch: The result of collate_fn, a dict with "input_ids", "labels", and "label_token_weights".
- model: The minitorch model to be trained.

Returns A scalar loss value for this batch, averaged across all target tokens.

Hint Use the function minitorch.nn.softmax_loss

3. generate: Generates target sequences for the given source sequences using the model, based on argmax decoding. Note that it runs generation on examples one-by-one instead of in a batched manner.

```
def generate(model,
```

```
examples,
         src_key,
         tgt_key,
         tokenizer,
         model_max_length,
         backend,
         desc):
...
```
Parameters

- model: The model used for generation.
- examples: The dataset examples containing source sequences.
- src_key: The key for accessing source texts in the examples.
- tgt_key: The key for accessing target texts in the examples.
- tokenizer: The tokenizer used for encoding texts.
- model_max_length: The maximum sequence length the model can handle.
- backend: The backend of minitorch tensors.
- desc: Description for the generation process (used in progress bars).

Returns A list of texts as generated target sequences.

Test Performance

Once all blanks are filled, run

python project/run_machine_translation.py

The outputs and bleu scores will be save in "./workdir_vocab10000_lr0.02_embd256". you should get BLEU score around 7 in the first epoch, and around 20 in 10 epochs. Every epoch takes around an hour, and every training step takes around 25 seconds on A10G.

Reference Performance

Submission

Please submit the whole llmys_s24_hw2 as a zip on canvas. Your code will be automatically compiled and graded with private test cases.